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Abstract

MACHAY MARTIN. 2016. Death Rates in the Calorie Model. �Acta Universitatis Agriculturae et Silviculturae 
Mendelianae Brunensis, 64(6): 2053–2058.

The Calorie model unifies the  Classical demand and the  supply in the  food market. Hence, solves 
the major problem of Classical stationary state. It is, hence, formalization of the Classical theory of 
population. The model does not reflect the imperfections of reality mentioned by Malthus himself. 
It is the aim of this brief paper to relax some of the strong assumptions of the Calorie model to make 
it more realistic. As the  results show the  political economists were correct. The  death resulting 
from malnutrition can occur way sooner than the stationary state itself. Moreover, progressive and 
retrograde movements can be easily described by the death rate derived in the paper.
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INTRODUCTION
Malthusian principle was tempting for economists 

since it was stated for the  first time in 1798. 
The relation between food supply and food demand 
stayed more or less in the area of interest ever since. 
The  original idea about growth of population 
exceeding the  capacity of an economy to produce 
the  means of subsistence leads to only one logical 
conclusion – stationary state. A moment in time 
when first people begin to die from malnutrition.

The original thought was first moved from 
the  mainstream economics due to contemporary 
realities when a capacity to produce food increased 
tremendously (Madsen et al., 2010) and then it 
was seemingly solved by the  almighty power of 
substitution mentioned by Jevons. Malthusian 
principle became a  fringe economic topic for 
several decades with resurfacing time to time. Later 
it was reformulated by Kremer (1993) in a  modern 
fashion – the  growth rates became endogenous in 
the model (see also Golosov et al., 2007) and means 
of subsistence became a  mere arbitrarily set level 
of income. Which per se moved the  interpretation 
from the original ideas of the Classical school. With 
endogenous growth rates the  dismal future was 
eventually simplified to a  utilitarian problem of 
parents (Becker et al., 1999) and they are enticing 
to be estimated by modern econometric tools 
(Birchenall, J. A., 2015). Kremer’s model is, thus, 
a Neoclassical one.

Even though the modern interpretation is elegant 
and intuitive it is in great contradiction to Malthus‘ 
thoughts. Malthus saw the growth of population as 
exogenous and in no way dependent on self-control 
of an individual: “I see no way by which man can escape 
from the  weight of this law which pervades all animated 
nature.” (Malthus, 1798) The same can be said about 
the “power in the earth to produce subsistence for man.”

As a  consequence the  Malthusian thoughts have 
been reduced to a  simple situation of growth of 
population exceeding the  capacity to produce 
the  means of subsistence and words and ideas of 
Malthus were reformulated or changed completely. 
The  original Malthusian framework have been 
formulated quite recently in the form of the Calorie 
model (Machay, 2012) which builds strictly on 
Malthusian thoughts and within the  Classical 
School approach using modern mathematical tools 
to unify the  Classical/Malthusian demand for and 
supply of food. The  Calorie model is just a  mere 
formalization of ideas of Malthus.

The Calorie model stands on a strong assumption 
of equal distribution of calories. Malthus, however, 
did recognize such an assumption as unrealistic. 
Using his words: “The poor consequently must live much 
worse, and many of them be reduced to severe distress” 
(Malthus, 1798). He focused on the  stationary state 
but he admitted that there are deaths preceding 
the stationary state itself.
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It is the  aim of this short paper to examine 
the death rates within the Malthusian framework by 
relaxing the strong assumption of the Calorie model. 
The task at hand, hence, solves a Classical problem 
within the  Classical School. It is a  complement to 
the Classical School and in no way in the opposition 
to the  neoclassical model as such. The  paper 
is divided into two parts. First part introduces 
the  Calorie model formally. The  second part then 
examines the  deaths in the  stationary state and 
relaxes the  strong assumption of the  model about 
the  equal distribution of calories within the  global 
economy.

The Calorie model
Due to non-uniformity of the  demand for food 

and the  supply of food that do not share the  same 
dimension in the  Classical school the  model 
assumes that what Classics intended to say was 
the  demand for and supply of calories. Calories 
are energy that powers the  organic bodies. Having 
too little of them the body shuts down. Once again 
we can use Malthus’s own words for expressing 
the  modern knowledge about human bodies: “By 
the law of our nature which makes food necessary to the life of 
man…” (Malthus, 1798).

It is not the goal of this section to present all details 
of the  Calorie model. For details see the  original 
article from 2012 (Machay).

The Calorie model places calories needed 
to sustain the  population against the  calories 
production capacity of the  planet. Formally 
the  calories consumption surplus (cs) can be 
constructed as
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where A(t) is technological level in time t, aT 
represents amount of calories produced naturally 
on all disposable land on the  planet without being 
affected by human activity, L(t) is the total population 
in time t, and cN stands for the  minimal amount of 
calories one average person must consume per unit 
of time. Hence, it is obvious that the  cS represents 
the  proportion between the  available amount 
of calories and the  minimum necessary to feed 
the population in any given time t.

Discounting (1) to the  beginning of time and 
equalizing origins to one yields
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As we can see the  surplus is, hence, strictly 
dependent – among obvious ones – on the  time 
we are in and the  initial endowment of the  planet. 
Under these circumstances the  Classical stationary 
state occurs in time tp

t
c a

g nP
N T=
−
−

log log
.	 (3)

The Calorie model then implies that from logical 
reasons g < n must hold. Hence, the  technological 
growth must be smaller than the  growth of 
population for the  stationary state to occur. This is 
the proof of Malthusian principle.

The Calorie model is also accompanied by 
the calorie price that is constructed to fulfill several 
convenient conditions:

1) if ∆cs when cs(t1) and cs(t2) are very large then ∆p→0
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In the  times of large consumption surpluses 
the  price fluctuates insignificantly. Natural 
conditions affecting the  aT have a  reverse effect to 
the price. The price is rising as the economy moves 
towards the  stationary state and finally the  price 
must be sky high when the stationary state is near. To 
avoid a  dull and simple discounted price trajectory 
the p(t) is arbitrarily set in the model as
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e a e cgt

T
nt

N

( )=
−
γ

	 (4)

where γ is the  p(t) for the  very last 
death‑free / surplus calorie. Thus, the  price of 
the  last available free calorie before first people in 
the model will begin to die.

The  visualization of the  model is provided in 
the Fig. 1.

 

1:  The Calorie model (Machay, 2012; pp. 176).



	 Death Rates in the Calorie Model� 2055

The Calorie model as it is constructed stands on 
two relatively strong assumptions.

First, the food in the form of calories is distributed 
equally within the  society and the  global economy. 
Second, the  growth rates of population and 
technological level are exogenous and are constant. 
On the  other hand we can see that the  price is 
endogenous.

The model itself leads to already mentioned 
theorem that the  growth of population must 
be larger than the  growth of technological level 
for stationary state to occur. From mentioned 
assumptions, specifications, and theorem it is 
clear why the  Calorie model can be considered as 
a formulation of Malthusian thoughts.

 The original article (Machay, 2012) develops and 
uses the Calorie model to explain the terraformation 
production as a  consequence of rational economic 
behavior of economic agents. While the solution to 
stationary state offered in the  article seems rather 
distant from the time point of view it is obvious that 
the deaths from malnutrition did and will take place 
sooner than the stationary state itself or its solution 
in the form of terraformation.

From this reason the  Calorie model fails to 
explain our contemporary realities while it forecasts 
the solution.

Moreover, from two assumptions of the  model 
one is absurd – mildly said. The  equal distribution 
of calories is an assumption from the  utopist 
economics which is in contradiction to Malthusian 
framework. The following section of this paper will 
relax this assumption and explore the  behavior of 
the Calorie model under weaker and more realistic 
assumptions of unequal distribution of calories 
and food market imperfections. Relaxing this 
assumption will help us to understand why there is 
death taking place before the stationary state itself is 
reached.

Deaths and the stationary state
This section will relax the  assumption of equal 

distribution of calories among the  population, but 
first it must explore the death rates in the stationary 
state. This is one aspect that is missing in the original 
article (Machay, 2012) because the  author did 
not even consider the  possibility of reaching 
the stationary state.

Death rate in the Calorie model
The stationary state is such a  moment when 

the whole population can be sustained at the current 
level of technologies used in production for the last 
time. Formally, it can be written as
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Any time ti > tp people will start dying because 
the  means of production cannot sustain larger 
population. The maximum possible population that 
can be sustained can be expressed easily as
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Because not all people can be sustained (L(tp + 1)
cN ≠ A(tp + 1)aT formally) and since g < n we can 
conclude that L(tp + 1) >L*(tp + 1). This leads to deaths 
occurring in the economy.

Now the  only thing left to be done is to express 
how many people will actually die one time period 
after the stationary state took place.
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where D(tp + 1) is amount of people who will 
die after the  stationary state is reached. This result 
is intuitive because we clearly see that only those 
newly born will survive after the  stationary state 
took place who can be sustained by additionally 
created calories as a  consequence of the  growth of 
technological level.

Expressing death rate in the  Calorie model is as 
well simple. Using (5) and (6) for a fraction of those 
who were alive at the  beginning of the  given time 
period and those who can be sustained
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Death rate in the  Calorie model as is shown in 
(8) is nothing else than positively dependent on 
the growth of population and negatively dependent 
on the  growth of technological level. Based on (8) 
two new theorems are derived for the Calorie model 
that were not examined previously.

Theorem 1: The  larger the  growth of population 
the  larger the  death rate will be after the  stationary 
state was reached by the economy.

Theorem 2: The larger the growth of technological 
level the  smaller the  death rate will be after 
the stationary state was reached by the economy.

The last question that still needs to be answered 
is what the  growth of population will be after 
the  stationary state will be reached. The  solution is 
obvious. The growth of population will be lessened 
by the death rate. Moreover, using (8) we get that

n
n

d
n
n
g

gP
P

= = = .	 (9)

Theorem 3: After the  stationary state is reached 
the growth of population will be equal to the growth 
of technological level.

This section added a new dimension to the Calorie 
model and derived the  death rate to illustrate 
what it means to reach the  stationary state. Next 
section will, however, examine deaths that precede 
the  stationary state due to imperfections of reality. 
This is an aspect that was broadly considered within 
the Classical School framework.
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Unequal distribution of calories
If calories are distributed unequally it is a  result 

of variation in the  income each person disposes 
with – by Malthus labeled as ‘ the poor’. Hence, we 
can assume that there is a  person whose income 
is different from the  income each other person 
disposes with.

Assumption 1: Let us suppose there is equal 
distribution of income in the society except for one 
person whose income is IN = αI0 for α > 0 and α ≠ 1.

This assumption replaces the  assumption of 
equal distribution of calories in the  society and 
from obvious reasons it is weaker than the  original 
assumption of the model.

For this person has a  different time of death 
than the  others then must be true that in the  time 
preceding her death all income will be spent for 
calories and the amount of calories purchased must 
be equal to cN. Formally stated

IN = p(t)cN.	 (10)

While for other members of the  society must be 
true

I0 = pXX + p(t)c + p(t)cN for c > 0 and pXX ≥ 0	 (11)

where pXX are expenditures of the  consumer 
allocated to other goods than calories. From (10) and 
(11) we can conclude that α ∈ (0;1) if the person is to 
die earlier than others. Now, substituting (4) in (10) 
and rearranging we get
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This is as much as the relaxed assumption will let 
us. Equation (12) has no solution without adding 
a new assumption because one cannot express time 
from (12). We can either set technological growth 
equal to zero or population growth to zero to get 
rid of the  complication. From logical point of view 
it makes sense to set the  technological growth to 
zero rather than the  growth of population because 
doing so the  society would actually move from 
the  stationary state and not towards it. Notice 
the  new assumption does not break the  other 
assumption of the Calorie model nor the theorems 
derived from the model itself.

Assumption 2: Let us suppose the g = 0.
Also notice that we replaced one very strong 

assumption with two weaker ones. However, both 
of them are still more realistic than the original one. 
Lets express time from (12) using assumption 2.
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The last time period when this person will still 
be alive is seemingly expressed in (13) but there is 
a  complication because due to aT and γ being very 
large numbers one must prove that the  expression 
in the  logarithm is not negative for having an 
existing solution within the set of real numbers.
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The problem presented here has a  solution in 
the  set of real numbers because the  expression 
in logarithm is positive as proved in (14). There is 
nothing in the  way of confirming that the  person 
will really die sooner than the  others. This can be 
shown very easily
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Which is true for α. As a consequence of the model 
specification it is obvious that the lower the income 
IN is in relation to the  income of others the  sooner 
the person will die in relation to others. The model 
seems to be elegant because it yields intuitive results 
in compliance with Malthusian thoughts about 
the  poor being the  first ones to die. From relaxing 
the strong assumption we can get another theorem 
resulting from the model.

Theorem 4: The smaller the income of the person 
the sooner she will die even though the economy as 
a whole did not reach the stationary state yet.

This helps to theoretically explain what is going 
on in the world, especially in Africa, even though we 
still did not reach the global stationary state.

Food market imperfections
The original Calorie model does view the  world 

as one market with free flow of calories. However, 
in reality we are far from a  perfectly globalized 
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economy. There are still significant trade barriers 
that prevent the  free flow of food all around 
the  globe. From this reason another death rate 
should be analyzed within the  framework of 
the  Calorie model. The  one resulting from 
the  unequal distribution of initial endowment of 
land that sustains the population. The globe shall be 
divided into two parts that cannot trade the calories 
while holding everything else constant.

Assumption 3: Let us suppose there are two 
societies on the  planet which occupy two parts 
of it such as aT1 = αaT and aT2 = (1 − α)aT and that 
the calories cannot flow from one part of the planet 
to the other one.

Each of the  part of the  globe dealing with 
individual conditions has unique calorie 
consumption surplus cs1and cs2. These two societies 
have as a consequence two unique stationary states 
which can be expressed very easily as

t
c a

g nP
N T

1 =
− −

−
log log logα

 and 

t
c a

g nP
N T

2

1
=

− − −( )
−

log log log α
.	 (16)

Let us further suppose that the stationary state in 
the first part of the world will come sooner than in 
the second one. For which α is this true?
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Since the  original theorem derived from 
the  original Calorie model in the  article (Machay, 
2012) states that the  rate of growth of population 
must be larger than the  growth of technological 
level for the  stationary state to occur it is easy to 
prove that for the  stationary state to take place 
earlier in the  first society alpha must be less then 
half of the available land for cultivation (as proved in 
17). This is once again very intuitive and only proves 
elegance of the  Calorie model and its conformity 
with the Classical School.

Theorem 5: If the planet is divided into two parts 
that cannot trade calories from whatever reason 
the  stationary state will ceteris paribus take place 
in the less endowed society in advance to the more 
endowed society.

 Calories are not the  only thing that can be 
prevented from crossing the  borders between 

our two societies. The  technological transfer or 
technological diffusion can be prevented from 
several reasons. It can be anything from legal 
restrictions to bans to capital movement because it is 
the physical capital that is the carrier of technologies. 
Our next step will be to explore the  variations in 
the growth of technological level.

Assumption 4: Let us suppose two identical 
societies sharing our planet for which only 
the growths of technological level are such as g1 ≠ g2 

while other assumptions about them (n > gi > 0  
especially) remain unchanged.

The assumption 4 represents production 
imperfection in the  form that the  stationary state 
in one part could have been avoided in the  case 
the  technologies could move freely across 
the  borderlines. Once again this will help us to 
make the Calorie model more realistic. Using similar 
construction as in (16) and assuming the stationary 
state will occur in the first society earlier we get
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We see in (19) that for the stationary state to occur 
in the  society sooner the  growth of technological 
level must be lesser than in the other society. This is 
again an intuitive conclusion that is formally stated 
in a following theorem.

Theorem 6: If there are two identical societies 
differing only in the  growth of technological level 
the  stationary state will occur sooner in the  society 
with lower growth of technological level.

In a  similar fashion we can assume different 
growths of population.

Assumption 5: Let us suppose two identical 
societies sharing our planet for which only 
the growths of population are such as n1 ≠ n2, while 
other assumptions about them (ni > g > 0 especially) 
remain unchanged.

The proof is done in a similar way as the previous 
one. For the proof see the appendix. The following 
theorem is then a  direct consequence of 
assumption 5.

Theorem 7: If there are two identical societies 
differing only in the  growth of population 
the  stationary state will occur sooner in the  society 
with larger growth of population.

There is one remaining variable that has not 
been explored in this article – the  average amount 
of calories needed to sustain an average person 
alive. From obvious reasons this variable is not 
an object of economic inquiry. This short paper 
explored all possible variations in the  death rates 
within the  framework of the  Calorie model and in 
the compliance with Malthus himself.
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DISCUSSION
This brief paper formalized and explored 

the  stationary state and death rates of the  Classical 
theory of population using the Calorie model which 
unlike the  Neoclassical model of population is 
derived strictly within the  Malthusian framework. 
All possible deaths were derived. The death rate was 
expressed because the original article (Machay, 2012) 
did not anticipate it as well as deaths resulting from 
imperfections and, thus, preceding the  stationary 
state itself. This paper provided proofs of seven 
Malthusian theorems.

Moreover, the  Malthusian system can be now 
easily formalized. First, let us speak Malthus for 
himself:

“During this season of distress, the  discouragements to 
marriage, and the  difficulty of rearing a  family are so great, 
that population is at a stand. … The situation of the labourer 
being then again tolerably comfortable, the  restraints to 
population are in some degree loosened; and the  same 
retrograde and progressive movements with respect to 
happiness are repeated.” (Malthus, 1798)

The two movements of the society (pre-stationary 
and stationary) are easily expressible.

m
n for c

n otherwise
P S=

→



1
	 (20)

where m is the movement of society. We clearly see 
that it is dependent on the  consumption surplus. 
If it is close to one the  society faces the  retrograde 
movement and when it is very large the  society 
enjoys a progressive movement.

But we are still far away from the  final 
formalization of the Classical theory of population. 
The  endogenous calorie price must be related 
to the  situation in the  labor market and as 
a  consequence the  incomes must be determined 
in a  Classical fashion. The  Calorie model should 
be estimated on the  real 19th century data. Further, 
the  Classical model can be moved closer to 
the  Neoclassicism by making the  growth rates 
being time dependent but not interdependent. 
Also a  detailed comparison between the  Classical 
and Neoclassical models is missing in the literature. 
Formalization done in this paper should make this 
much easier. After all it seems there is much more 
in Malthus we still can use in modern era than 
a simple principle of population growing faster than 
the means of subsistence which is already a starting 
point of any population model.
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Appendix A. Proof of Theorem 7
Using assumption 5 and supposing that 

the  stationary state will occur in the  first society 
earlier than in the  second one we can, in a  similar 
fashion as (16) and (18), write
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