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Abstract

HAMIDI PEYMAN, AKHLAGHI TOHID, HAJIALILOU BONAB MASOUD. 2016. Finite Element 
Limit Analysis of Active Earth Pressure in Nonhomogeneous soils. �Acta Universitatis Agriculturae 
et Silviculturae Mendelianae Brunensis, 64(4): 1131–1138.

Limit analysis is a useful method to calc1ulate bearing capacity of footings, earth pressure of retaining 
walls, stability of slopes and excavations. In recent years, many efforts have been focused on stability 
problems of geotechnical structures with the limit analysis method. The limit analysis method 
includes the upper and lower bound theorems. By using the two theorems, the range, in which the 
true solution falls, can be found.
In this paper upper bound finite element limit analysis is used for calculate active earth force on 
retaining walls in non-homogeneous soils. Elements with linear strain rates cause to eliminate the 
necessity of velocity discontinuities between the elements. Nonlinear programming based on second 
order cone programming (SOCP) ,which has good conformity with Mohr-Coulomb criterion used in 
this paper. The sensitivity of active earth force against backfill surcharge (q), soil layers cohesion (Ci), 
soil layers unit weight (γi) and friction angle between soil and wall (δi) is surveyed.

Keywords: nonhomogeneous soil, upper bound, finite element, optimization, nonlinear programming, 
retaining wall, limit analysis

INTRODUCTION
Recently, the upper and lower bound theorems 

of plasticity are widely used to analyze the stability 
of geotechnical structures. The stability problems 
include the bearing capacity of foundations, the 
active and passive earth pressures on retaining 
walls, and the factor of safety of slopes. By using the 
two theorems, the range, in which true solution falls, 
can be found. This range can be narrowed by finding 
the highest possible lower bound solution and the 
lowest possible upper bound solution.

The main difficulty in obtaining strict upper 
bounds via the finite element method is that the 
flow rule constraint can only be enforced at a 
finite number of points, yet it is required to hold 
throughout the discretized structure. Satisfying 
this requirement becomes especially difficult in the 
case of cohesive-frictional materials, where the only 
obvious solution is to use constant strain elements. 

By using linear strain elements which is used in this 
paper, the difficulty is removed.

In all methods of finite element limit analysis, 
a key aspect is the efficient solution of the arising 
optimization problem. Linear programming (LP) 
has been used for a long time, but the need to 
replace the (invariably nonlinear) yield function by 
numerous linear inequality constraints means that 
the computational cost becomes prohibitive for 
large problems. During the last twenty years there 
has been considerable progress in the application 
of nonlinear programming (NLP), which allows the 
yield function to be treated in its native form. [1]

Retaining wall has been widely used in civil 
engineering, traffic engineering, hydraulic 
engineering and the port engineering. The design 
of retaining wall was mainly based on the earth 
pressure which was calculated mainly using the 
prevailing classical Rankine and Coulumb theory. 
[5]
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There are very few studies about active earth 
pressure in nonhomogeneous soils, while soil 
deposits are usually nonhomogeneous in nature, 
and it is clear that investigations dealing with 
nonhomogeneous soils are required for accurate 
analysis and design of retaining walls.

In this paper an effective and accurate method 
is introduced for analysis and design of retaining 
walls in nonhomogeneous soils based on upper 
bound finite element formulation. This is a novel 
method for calculating strict active earth pressure in 
nonhomogeneous soils and sensitivity of calculated 
force is evaluated against backfill surcharge (q), soil 
layers cohesion (Ci), soil layers unit weight (γi) and 
friction angle of layers (∅i) and between soil and wall 
(δi).

MATERIALS AND METHODS

Second-Order Cone Programming
Second-order cone programming (also referred 

to in the literature as conic quadratic optimization) 
involves an optimization problem of the form
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Where Pi, zi ∈ ℜdi, Pf, zf ∈ ℜnf, Ai ∈ ℜm × di, Af ∈ ℜm × nf, 
g ∈ ℜm and the sets Ci are quadratic cones of the form

C = {z ∈ ℜd : ǁz2 : dǁ ≤ z1,z1 ≥ 0}	 (2)

Where z2:d = [z2 … zd]T. For brevity in what follows 
we will also employ the notation

(z1 , z2:d) ∈ C	 (3)

As shorthand for (2). Variables not participating 
in a cone constraint are called free variables, and 
these are denoted zf in (1). Nothing that the pi are 
self‑dual, the dual problem corresponding to (1) is:
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Where V ∈ ℜm and ti ∈ ℜdi. The optimal point must 
satisfy the following conditions:
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Where Xi, Si ∈ ℜdi × di and ei = [1 0 ... 0]T∈ ℜdi. 
The ‘arrowhead’ matrices Zi and Ti are given by 
mat(zi) and mat(ti) respectively, where [2]:
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The Drucker-Prager Criterion
It is convenient to decompose the stresses 

and strains into their spherical and deviatoric 
components, employing notation
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 Where N is the dimension of the tensors and δ is 
Kronecker’s δ. The yield criterion of Drucker and 
Prager [3] can be expressed in the form

j t a km2 0( ) + − ≤σ
	

(8)

 Where a and k are non-negative material 
parameters and

j t ti j2
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 It can easily be seen that the set of plastically 
admissible stresses

S f= ( )≤{ }σ σ: 0
	 (10)

is a second-order cone (using the Frobenius 
norm):
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We defi ne the plastic dissipation function as

 
(12)

 and the set of plastically admissible strains (those 
satisfying the associated fl ow rule) as

 (13)

 The following two cases are considered:
• a = 0. The Drucker-Prager criterion reduces to the 

von Mises criterion, giving

 
(14)

• a > 0. It is convenient to introduce an auxiliary 
variable Γ and set θ = aΓ, leading to

 

(15)

In these equations J2(k), the second invariant of 
the deviatoric strain tensor, is defi ned in the same 
way as J2(t) above. Expressions equivalent to (14) 
and (15) are given by Salencon, though they can 
also be obtained directly from the defi nition (12), 
using the fact that S is a self-dual cone. Concerning 
the dissipation function for plastically admissible 
strains, it holds that

 
(16)

However, since in the application of the kinematic 
theorem the dissipation will have to be minimized, 
we can consider that when a = 0 the set of the 
plastically admissible strains is the same as when 
a > 0, i.e. fi nally we have

 (17)

We notice that, as with the stresses, the set of 
plastically admissible strains is a second-order cone:

 (18)

A geometric interpretation is given in Figure 1.

For a 6-node triangular fi nite element, the 
displacement fi eld is given by

w x x a a x a x a x x a x a x( , )1 2 0 1 1 2 2 3 1 2 4 1
2

5 2
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 where the vectors ai ∈ ℜ2 consist of factors 
depending on the element geometry and the 
nodal displacements. This means that any strain 
component varies according to

εkl x x a a x a x1 2 0 1 1 2 2,( ) = + +  (20)

and thus the strain tensor at any point within the 
area of the element can be expressed as a linear 
combination of those at the three vertices. Moreover, 
if the sides are straight, the strain tensor at any point 
in the triangle belongs to the simplex defi ned by the 
strain tensors at the vertices, i.e.
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where the coeffi  cients ri = hi = Ai ⁄ Ael are area 
coordinates with respect to the three vertices. 
Obviously this also holds for the volume expansion 
θ and the deviatoric strain tensor k [1].

1: The set of plastically admissible stresses and strains for the 
Drucker-Prager criterion Simplex Strain Elements

2: 6-node displacement element for upper bound analysis
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FEM Formulation for Plane Strain and the 
Mohr-Coulomb Criterion

For plane strain conditions, the Mohr-Coulomb 
yield criterion has the same form as the Drucker-
Prager criterion discussed in Section 3, considering

N a and k c= = = ∅2, sin .cos   ϕ  (22)

Where c is the cohesion and φ is the angle of 
internal friction. Since

t t and t t22 11 21 12= − = −   (23)

the yield restriction takes a form similar to (8):

t red
ma k+ − ≤σ 0

 (24)

where t red Tt t=[ ]11 12 . Similarly the dissipation 
function and fl ow rule resemble:

f k with a andp
red= = ≥Γ Γ Γ,     θ k

 (25)

where
 
kred T

k k= 2 211 12 .
Considering the application of the kinematic 

theorem to a plane strain structure discretized into 
NE fi nite elements, the optimization problem takes 
the form

 

(26)

 where q, q0 are vectors of equivalent nodal loads 
arising from the surface tractions l, l0 and body 
forces b, b0. As before, the subscript 0 denotes 
constant loads that are not subjected to the load 
multiplier. The matrices Bm and Bd can easily 
be derived from the usual strain-displacement 
relations. For conciseness we have assumed in (26), 
and in what follows, that w = 0 on Su.

To solve the problem, it is necessary to defi ne 
fl ow rule points for each element so that the strain-
displacement relations only need to be evaluated 
at a fi nite number of points, while also ensuring 
that the fl ow rule holds over the whole area of the 
element. The integral of the dissipation function in 
(26), considering that Γ varies as a simplex can then 
be calculated as

k dA k
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where

k h k dAi iA
= ( ) ( )∫ x x

 (28)

in which hi is the relevant area coordinate, see (21) 
and Figure 2. The value of a (= sin ϕ) is required to 
be constant within a given element to ensure that 
the fl ow rule is satisfi ed rigorously. So in terms of 
the Mohr-Coulomb parameters, c can vary within 
an element but ϕ cannot. If both c and ϕ are constant 

then k k Ai el=  / 3  where Ael is the area of the element. 
We can now formulate (26) as a standard SOCP 
problem, cf. (1):

 

(29)

where

Here NP is the total number of the fl ow rule points 
(NP =3×NE) and NU is the total number of degrees 
of freedom (double the number of nodes, excluding 
those on Su). The dual problem corresponding to 
(29) is as follows:

 

(30)

 Expressing now the variables 

y and and t Am i d i i
red

i el i, , , /     in terms of σ η = 3  (where 
Ael,i is the area of the element to which the ith fl ow 
rule point belongs) we obtain aft er some additional 
manipulations [1]:



	 Finite Element Limit Analysis of Active Earth Pressure in Nonhomogeneous soils� 1135

max

. . , ,

, ,

,

, ,
*

β

σ

s t y t C i NP

y a k i NP

m i i
red

i

m i i m i i

( )∈ ∀ ∈ …{ }
+ = ∀ ∈ …{

1

1 }}

+ − =
= =
∑ ∑G G t q qm i
I

NP

m i d i i
red

I

NP

, , ,
1

0
1

σ β
	

(31)

 Where G Bm i i m i
T

, ,=η , G Bdi i d i
T=η ,  and k k k ki i i i

* / ( )= =η  for constant  (= k1 

for constant k). Note that when a > 0, the variables 
σm,i can easily can easily be eliminated (along with 
the equalities y a km i i m i i, ,

*+ =σ ) as described in [4].

Active earth pressure on retaining walls
Retaining walls has been widely used in civil 

engineering, traffic engineering, hydraulic 
engineering and the port engineering. The design 
of retaining walls was mainly based on the earth 
pressure which was calculated mainly using the 
prevailing classical Rankine and Coulumb theory. 
It was proven that the calculation result of passive 
earth pressure is larger than the actual situation, 
and also each of them have certain application 
conditions (Peng, 2008). Rankine’s theory can be 
used when the wall back-surface is smooth and 
vetical, also the backfill surface should be horizontal, 
while the Coulumb’s earth pressure theory can 
be used when the backfill is cohesionless soil. But 
it is difficult to meet these conditions in practical 
project. In view of the shortage of prevailing 
classical theory to calculate earth pressure, it had 
been extensively studied by scholars at home and 
abroad. Mazindrani et al. (1997), Gnanapragasam 
(2000) analyzed the earth pressure acting on 
retaining wall with inclined backfill surface and 
cohesive soil. Zheng et al. (2006) considered the 
cohesion of clay as a single calculation factor, and 
the corresponding formula was derived by using 
limit analysis method for calculate the active earth 
pressure of the clay subgrade retaining wall. Nian et 
al. (2002) developed a theoretical solution of active 
and passive earth pressure of cohesive backfill with 

inclined surface under surcharge on the basis of 
lower-bound theorem of limit analysis. Lu (2002) 
proposed a formula of active earth pressure on 
retaining wall which considers the cohesion force 
on sliding plane and the adhesive force on interface 
of soil and retaining wall. Yang et al. (2011)derived 
a unified solution for the distribution, total force, 
location of the resultant, active and passive earth 
pressures on retaining wall and the reacting force on 
failure surface using differential slice method and 
graphic method based on the plane failure surface 
hypothesis and the limit equilibrium theory, and 
the solution was applied to the case with a battered 
wall, inclined ground surface, cohesive backfill an 
distributed surcharge on the ground surface. Hu 
(2006) improved the Coulumb accurate solution 
of active earth pressure to cohesive soil which 
considered the cohesion force on slip surface 
and adhesive force on interface of retaining wall 
based on sliding plane hypothesis of Coulumb 
earth pressure theory. Lin et al. (2008) deduced the 
analytical solution of active earth pressure acting 
on retaining wall by using the thin layer element 
method under complicated circumstances. Xu et al. 
(2002), Duncan et al. (2001) studied the passive earth 
pressure by model tests, and some good conclusions 
were achieved. [5]

Homogeneous soil has been investigated in 
previous studies. Although natural soil deposits 
are dominantly nonhomogeneous, few studies 
have been conducted on active earth pressure in 
nonhomogeneous soils. Consequently, further 
studies dealing with nonhomogeneous soils are 
required for conducting an accurate analysis and 
designing the retaining walls.

In this paper, an effective and accurate method is 
proposed for analyzing and designing the retaining 
walls in nonhomogeneous soils based on the above-
mentioned upper bound finite element formulation. 
This is a new method for calculating the strict active 
earth pressure in nonhomogeneous soils in which 
sensitivity of the calculated force against the backfill 
surcharge(q), cohesion of the soil layers (Ci), unit 

I:  Active earth force on retaining wall in homogenous soil (kN/m)

α(deg.) H(m) β(deg.) Υ(kN/m3) q(kN/m2) C(kN/m2) Ø(deg.) δ(deg.) Coulomb
method

Proposed 
upper 
bound 

method

Error
(%)

90° 4 0 18 10 0 20 0 90.21 90.21 0

90° 4 0 19 10 0 20 5 89.25 89.40 0.17

90° 4 0 20 10 0 20 10 89.35 89.97 0.69

90° 4 0 18 10 0 20 15 79.93 81.22 1.61

90° 4 0 19 10 0 30 0 64 64 0

90° 4 0 20 10 0 30 10 61.7 61.89 0.31

90° 4 0 18 10 0 30 15 55.46 55.87 0.74

90° 4 0 19 10 0 30 20 57.08 57.85 1.35
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weight of the soil layers (γi) and friction angle of the 
layers (φi) and friction angle between the soil and the 
wall (δi) are measured.

Two-dimensional problems of the plane strain, 
herein exemplified, follow the Mohr-Coulomb 
criterion. The program has been written in 
MATLAB, which creates the geometry, formulates 
optimization, and solves the problem. The 
interior - point algorithm is used for solving the 
optimization problem and fmincon solver from the 
MATLAB optimization toolbox is used, too. In order 
to verify the method, at first, a benchmark problem 
is solved and the results are compared using the 
well-known methods, then the main problem will 
be solved.

Active Earth Pressure on Retaining Walls in 
Homogeneous Soils

In order to verify the program, active earth 
pressure on the retaining wall in homogeneous 
soil is calculated both using the limit equilibrium 
method-based coulomb theory and the proposed 
upper bound method and the results are compared.

For upper bound analysis, a mesh of triangles, as 
shown in figure 3, composed of 256 triangular six-
node elements were compared using the coulomb 
limit equilibrium method and the results were 
summarized in Table I. If there is not any surcharge 
on the backfill, the boundary condition for dual 
problem and for the nodes on the surface of the 
backfill (N = 529 - 561) is 611 = 622 = 612 = 0. Clearly, 
the results of the proposed upper bound are very 
close to those obtained for homogeneous soil using 
the coulomb method.

Active Earth Pressure on Retaining Wall in 
Nonhomogeneous Soils

Calculating the active earth pressure on the 
retaining walls in nonhomogeneous soils is one of 
the controversial problems in area of the applied 
soil mechanics. Proposed upper bound method 
provides a new solution for calculating the active 
earth force in this condition. For evaluating the 
effect of each parameter on the resultant active force 
on the retaining wall, all parameters are changed 
and the results are shown in figures 4-7. All physical, 
mechanical, and geometrical parameters are as 
follow:
H1: thickness of top layer of soil
H2: thickness of bottom layer of soil
β: wall inclination angle
α: backfill surface angle
q: backfill surcharge
C1: cohesion of top layer of soil
C2: cohesion of bottom layer of soil
φ1: friction angle of top layer of soil
φ2: friction angle of bottom layer of soil
δ1: friction angle between top layer of soil and wall
δ2: friction angle between bottom layer of soil and 
wall
γ1: unit weight of top layer of soil
γ2: unit weight of bottom layer of soil

Effect of Wall Inclination (β) and Backfill 
Surcharge (q) on Active Earth Force:

Effect of wall inclination (β) and backfill surcharge 
(q) on active earth force is shown in figure (4). In this 
figure other parameters are:

C1 = C2 = 0 , α = 0 , δ = 2φ/3 , ∅1 = ∅2 = 30° , 
H1 = 2m , H2 = 2m , γ1 = 18 KN/m3 , γ2=19 KN/m3

3:  6-node displacement element for upper bound analysis
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It is clear that both the wall inclination (β) and 
backfill surcharge (q) have a significant effect on 
active earth force, wherein the force is increased by 
increasing q and decreasing β as shown in figure (4).

Effect of Top Layer Cohesion (C1) and 
Cohesion Ratio (t = C2/C1) on Active Earth 

Force:
Effect of top layer cohesion (C1) and cohesion 

ratio (t = C2/C1) is shown in figure (5).
In this figure other parameters are:

α = 0 , δ = 2φ/3, ∅1 = 25° ,∅2 = 30° , H1 = 2m , q = 0 , 
H2 = 2m , γ1 = 18 KN/m3, γ2 = 19 KN/m3, β = 90°

It is clear that both the top layer cohesion (C1) and 
cohesion ratio (t = C2/C1) are effective parameters 
on active earth force, wherein the force is decreased 
by increasing (C1) and (t).

Effect of Top Layer Unit Weight (γ1) and Unit 

Weight Ratio r =








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γ
γ

2

1

 on Active Earth Force:

Effect of top layer unit weight (γ1) and unit weight 

ratio r =








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γ
γ

2

1

 on active earth force is shown in figure 
(6).

In this figure other parameters are:

H1 = 2m, H2 = 2m, α = 0, q = 0, C1 = 0, C2 = 0, ∅1 = 30°, 
∅2 = 35^° ,δ = 2∅/3, β = 90°

It is clear that these two parameters have a 
significant effect on active earth force acting on 
retaining wall in nonhomogeneous soils, wherein 

increasing in both parameters cause an increase in 
the force.

Effect of Top Layer Friction Angle (∅1) and 
Interface Friction Angle Ratio (k = δ/∅) on 

Active Earth Force:

Effect of top layer friction angle (∅1) and interface 
friction angle ratio on active earth force is shown in 
figure (7).

In this figure other parameters are:

H1 = 2m , H2 = 2m , α=0 , q = 0 , C1 = 0 , C2 = 0 , 
∅2=30°, β=90°, γ1 = 18KN/m3, γ2 = 20KN/m3

According to figure (7) top layer friction angle 
has an important role in active earth force acting 
on retaining wall in nonhomogeneous soil, while 
increasing in (S) from zero to 0.33 has a significant 
effect in Pa and further increase in (S) has insensible 
effect on Pa. However, Pa is increased by increasing ∅ 
and decreasing S.
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DISCUSSION AND CONCLUSION
As shown in figures 4–7, the results are summarized as follow:

1.	 Active earth force on retaining wall is increased by increasing backfill surcharge (q).
2.	 Increasing the wall inclination (β) decreses active earth force on the wall.
3.	 Active earth force on retaining wall is decreased by increasing the top layer cohesion(C1).
4.	  Cohesion ratio (t = C2 / C1) is an important parameter on active earth force which increase in (t) afford 

decreasing active earth force on retaining wall.
5.	 Increasing the top layer unit weight (γ1) increases active earth force on the wall.
6.	 Active earth force on retaining wall is increased by increasing the unit weight ratio (r = γ2 / γ1).
7.	 Top layer friction angle( ∅1) is another significant parameter on active earth force which increase in (∅1) 

afford increasing active earth force on retaining wall.
8.	 Increasing the interface friction angle ratio (S) decreases active earth force on the wall.

In this paper formulation of upper bound finite element was introduced. Elimination necessity 
of velocity discontinuities between the elements is an advantage of linear strain elements used in 
formulation. This is very important, because the accuracy of solution is completely dependent on 
the position of velocity discontinuities in problems with discontinuities and inappropriate mesh 
will reduce the accuracy of method. Using second order cone programming (SOCP), which has good 
conformity with cone yield functions like Mohr-Coloumb, is another important advantage which 
removes problems of using linear programming algorithms for yield functions such as divergent in 
the apexes.
 Natural soil deposits are dominantly nonhomogeneous, and it is clear that further studies dealing 
with nonhomogeneous soils are required for conducting an accurate analysis and designing the 
retaining walls.
In this paper, an effective and accurate method is proposed for analyzing and designing the retaining 
walls in nonhomogeneous soils based on the above-mentioned upper bound finite element 
formulation. This is a new method for calculating the strict active earth pressure in nonhomogeneous 
soils. The results obtained from examples demonstrate that the proposed method is highly effective 
and precise for analyzing the earth pressure in nonhomogeneous soils.
According to results of analysis, active earth force in nonhomogeneous soils decreases by increasing 
in wall inclination(β) , the top layer cohesion(C1), Cohesion ratio (t=C2 / C1) and interface friction angle 
ratio (S),whereas increases by increasing in backfill surcharge (q), top layer unit weight (γ1), unit weight 
ratio (r = γ2 / γ1) and top layer friction angle(∅1).


