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The time limited vehicle routing problem (TLVRP) stems from the vehicle routing problem. The main 
diff erence is that the routes are paths (not cycles), i.e. vehicles do not return to the central city (or at 
least we do not observe their way back). Costs are given for the straight routes between each pair of 
the cities and represent the time necessary for going through. Each path must not exceed a given time 
limit. The sum of times for all routes is to be minimized.
This problem is NP-hard. There are many various possibilities how to design the heuristics 
(approximation methods) to solve it. One of the ways of how to obtain an approximation method 
for the TLVRP is to modify the famous savings method by Clark and Wright (1964) for this purpose. 
In this paper we suggest several diff erent versions of this method, test them in some instances, and 
evaluate and mutually compare the results of individual versions.

time limited vehicle routing problem, vehicle routing problem, traveling salesman problem, savings 
method

The problem of the delivery optimization of 
specifi c material can in reality be encountered 
very o� en. The delivery is usually realized by 
a circular or round trip which, in comparison with 
the realization of each route from the supplier 
to the consumer, saves expenses for individual 
gateways from the same supplier and/or trips to one 
consumer. There exist many tasks of this kind and, 
in general, they are referred to as vehicle routing 
problems (VRP). Practically all of them belong to 
the NP-hard problems (Lenstra and Rinnooy Kan, 
1981; Laporte, 1992), for which there is no effi  cient 
algorithm fi nding their theoretical optimum. Thus 
the only way to obtain effi  ciently or in a reasonably 
short time some solution is to use some of heuristics 
(approximation methods), which give only a “good” 
or “close to optimal” solution, not exactly optimum. 
Because of the variety of the VRPs, they are, in 
general, studied relatively o� en, recently by e.g. 
Borgulya (2008); Thangiah, Fergany, and Awan 
(2007); and Belfi ore and Favero (2007).

The time limited vehicle routing problem 
(TLVRP) is a special case of the open vehicle routing 
problem (OVRP). The main feature of the OVRP is 
that the routes are paths (not cycles), i.e. vehicles 
do not return to the central city (or at least we 
do not observe their way back). The fi rst proposal 
of an approach to solving the OVRP was by Bodin, 
Golden, Assad and Ball (1983), even for a case 
study with time windows. Brandão (2004) and Fu, 
Eglese and Li (2005) carried out the tabu search 
heuristic to solve the OVRP with constraints on 
the vehicle capacity and maximum route length. 
Tarantilis, Ioannou, Kiranoudis and Prastacos 
(2004) proposed annealing-based methods. Pisinger 
and Ropke (2007) presented a large neigbourhood 
search heuristic. Poli, Kennedy and Blackwell 
(2007), Li, Golden and Wasil (2007) and MirHassani 
and Abolghasemi (2011) proposed particle swarm 
approaches. Other most recent methods are e.g. 
by Zachariadis and Kiranoudis (2009), Repousis, 
Tarantilis, Bräysy and Ioannou (2010), Salari, Toth 
and Tramontani (2010) and Yu, Ding and Zhu (2011).
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All the problems mentioned above had vehicle 
capacity constraints, in contrast to the TLVRP, as 
follows from the defi nition below.

The VLVRP is defi ned as follows: One central city 
and other n (ordinary) cities are given and for each 
pair of the cities a cost is given, representing the 
time necessary for travelling along the straight route 
between them. The cost matrix is supposed to be 
symmetric. The goal is to fi nd a set of paths so that 
each of them has one of its endpoints in the central 
city, its length does not exceed a given time limit L 
and each city lies exactly on one of the paths except 
for the central city.

Let us introduce the following notation. The 
central city will be indexed by 0 and the other cities 
by numbers from 1 to n. The cost matrix will be 
denoted by C (and so single costs cij, i, j = 0, …, n). 
The decision variables xij are bivalent and indicate 
whether the straight route from the city i to city j is 
in the solution, the decision variables ui present the 
time the vehicle spends travelling along the route 
from city 0 to city i. M is a suffi  ciently large constant 
(in comparison to L and cij). The mathematical model 
of the TLVRP according to Pelikán (2006), where it is 
fi rst defi ned, is:
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The objective function z represents the total 
length (time) of all the routes. The fi rst two groups 
of equations assure that just one edge goes from or 
to each city. Then the constraints which defi ne the 
sense of the variables ui as mentioned above follow 
and the last group of constraints assures that no 
route exceeds the time limit L.

This problem has many practical instances, e.g. 
the transportation of newspapers from a publishing 
house to shops, grocery products (dumplings etc.) 
from a manufacturer to restaurants, daily reports 
from affi  liated branches to headquarters (this 
example is mentioned in Pelikán, 2006) etc. Each 
vehicle is required to visit all the cities on its route 
until a given time, but we do not mind how it gets 
from the end back to the start of its route to realize 
it next time.

Nevertheless, the TLVRP has been studied for 
quite a short time, and relatively little. It stems 
from the VRP, and thus from the traveling salesman 
problem (TSP). The task of TSP is to construct 

one cyclic route containing all the cities. Thus the 
heuristics (approximation methods) for the TLVRP 
can be derived from the methods for the VRP and 
the TSP in a similar manner as is usual in the case of 
other related NP-hard problems (e.g. Blazsik, Imreh, 
and Kovacs, 2008).

Generally, we can diff erentiate two basic types of 
heuristics: the fi rst one constructs a solution (from 
the beginning) while the second one improves an 
initial solution (which is either randomly given or 
obtained using another approximation method). For 
deriving methods for the TLVRP (or some of other 
related problems) from methods for the TSP, the 
former type is more suitable because the latter one, 
improving the solution, utilizes special properties 
of TSP solutions which are hardly modifi able for 
the solutions of diff erent tasks. Perhaps the most 
famous method improving the solution is by Lin 
and Kernighan (1973).

One of well-known approximation methods 
for the TSP constructing a solution is the savings 
method by Clarke and Wright (1964). The aim of this 
paper is to present some of its modifi cations for the 
TLVRP and test it on several examples. Its algorithm 
is described in the following chapter.

Other examples of heuristics for the TSP 
constructing a solution are the nearest neighbour 
method, tree approaches, nearest merger method 
and insertion methods. All of them were investigated 
by Rosenkrantz, Stearns, and Lewis (1977). The 
modifi cation of the fi rst one for the TLVRP is used 
in this paper to compare the results and evaluate 
single versions of the savings method for the TLVRP 
proposed here. The most accurate method for 
the TSP is the Christofi des method (1976) based 
on the combination of the tree approach and the 
construction of minimum matching which always 
fi nds a solution at most 1.5-times longer than the 
optimum. Let us mention also the patching method 
by Karp (1979) and the loss method by Webb (1971) 
and Van der Cruyssen and Rijckaert (1978).

MATERIALS AND METHODS

Savings method for the TSP
The savings method (SM) is based on comparing 

lengths of a straight route between any two cities and 
a route via another selected city, using the following 
algorithm:
1. Choose arbitrarily one city. Denote it 0.
2. For all pairs of other cities (i, j) compute the 

savings sij = ci0 + c0j − cij.
3. Process the edges (straight routes between pairs 

of cities) according to the descending order of 
the savings sij using the following rules: When by 
adding an edge we obtain a set of vertex disjoint 
paths, we add it to the solution. 

4. Repeat the procedure until the Hamiltonian path 
containing all the cities except the central one 
has been created.
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5. Finally, add the city 0 to close the cyclic route.
It is recommended to use all the cities as the city 0 

and select the best result.

Savings method for the TLVRP
To solve the TLVRP the edges from/to the central 

city are important, because they are more frequently 
used than other edges. Therefore, modifying this 
method for the TLVRP, the choice of the central city 
as the city 0 from the TSP algorithm will be natural 
and appropriate.

Pelikán (2006) presents the following modifi cation 
for the TLVRP which we will denote as a sequential 
savings method (SSM) for the purpose of this 
paper:
1. For all pairs of non-central cities (i, j) compute the 

savings sij = ci0 + c0j − cij.
2. Start the construction of a new path (route for one 

vehicle) by choosing the edge with the maximum 
savings sij.

3. Repeat the following procedure: add the edge 
with the maximum possible savings so that it is 
adjacent to some of the endpoints of the path and 
joins a city still not lying on any other path, while 
the length of the path, a� er joining city 0 to its 
closer end, does not exceed the time limit L.

4. Finally, fi nish the construction by joining the city 
0 to the closer end of the path.

5. Repeat steps from 2 to 4 (constructing single 
paths) until all the cities lie on some of the paths.

Nearest neighbour method (NNM)
NNM is perhaps the simplest possible way to 

construct cyclic routes. The following version for 
the TLVRP is also taken from Pelikán (2006).
1. To start the construction of a new path, join the 

closest city from the ones which have not yet 
been put on any route to the central one.

2. Repeat the following procedure: Join the closest 
city to the last joined one to the path, provided 
that the total length of the path does not exceed 
the time limit L. The algorithm terminates as 
soon as all the cities lie on some of the paths. 
Otherwise, go to step 1 to construct another path.

Such simple methods as the NNM o� en do not 
give good results. As regards the NNM version for 
the TSP, Rosenkrantz, Stearns, and Lewis (1977) 
have shown that if we require any accuracy ratio 
for the solution, there exists an instance for which 
the NNM cannot achieve it. We present the NNM 
results especially for the demonstration of how 
poor quality of results may be obtained by the use 
of approximation methods, in comparison with the 
SM results.

Habr frequencies approach (HFA)
Habr (1964) is o� en regarded as a founder of the 

Czech systems school. He introduced frequencies 
based on the comparison of an edge with all the 
other edges (not only with those containing one 

selected city as in the case of the savings). Thus, 
using them we should obtain very good results 
valuable our assessment of the SM versions.

The frequencies can be expressed using the 
following formula:
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There exists another form, called modifi ed 
frequency, more suitable for computations: 
F`ij = cij − ri − sj, where ri and sj are the arithmetic 
means of the costs of i-th row and j-th column of 
C, respectively. F`ij can be derived from Fij by linear 
transformation.

Habr frequencies consider all edges with the 
same importance. But in the case of the TLVRP 
the edges incident to the central city are more 
important (more frequently used) than the others, as 
mentioned above when discussing the SM. Now we 
will show how big this diff erence is: Let us suppose 
that the solution will consist of p path (p vehicles 
will be used). Let us consider a randomly chosen 
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the frequencies for the TLVRP we propose the 
following formula
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or a formula for the modifi ed frequencies F`ij 
derived by an analogous linear transformation, as in 
the general case above, which will not be mentioned 
here.

We used a parallel version of the HFA (analogous 
to the non-limited version of the SM described in 
the following chapter):
1. For all pairs of the non-central cities (i, j) compute 

the frequencies using the formula for the TLVRP.
2. Process the edges according to the descending 

order of the frequencies using the following 
rule: When by adding an edge we obtain a set 
of vertex disjoint paths and the length of each 
path, a� er joining the city 0 to the its closer end, 
does not exceed the time limit L, then we add it 
to the solution. Repeat this procedure until each 
city lies on some of the paths and by joining two 
arbitrary paths the allowed time limit is exceeded.
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3. In the end add the city 0 to the closer end of all 
the paths.

This version was also used in e.g. Kučera, Houška, 
and Beránková (2008).

Neighbour search heuristic (NSH)
The last method which is hereby proposed and 

used by the author has been inspired by Pisinger 
and Ropke (2007).
1. For each city fi nd its closest city. Add edges formed 

by these pairs of cities subsequently according to 
their ascending cost. If it is not possible to add 
an edge to the solution because it forms a tree 
or a path longer than the time limit L with the 
edges added so far, then try to add the edge to the 
second closest city. If even this is not possible, 
then add an edge to the third closest one etc.

2. Execute the same procedure as in step 1 with the 
paths so far obtained. Repeat this step until there 
are no two paths joinable in this manner.

RESULTS AND DISCUSSION
Because sequentially proceeding methods give 

generally worse results than the parallel proceeding 
ones, one way to improve the SSM is to implement 
a parallel process into its algorithm so that it 
can construct the routes not one by one but all 
simultaneously. In fact, it diff ers from the HFA in 
computing the savings instead of frequencies only:
1. For all pairs of non-central cities (i, j) compute the 

savings sij = ci0 + c0j − cij.
2. Process the edges according to the descending 

order of the savings sij using the following rule: 
When by adding an edge we obtain a set of vertex 
disjoint paths and the length of each path, a� er 
joining the city 0 to the its closer end, does not 
exceed the time limit L, then we add it to the 
solution. Repeat this procedure until each city 
lies on some of the paths and by joining two 
arbitrary paths the allowed time limit is exceeded.

3. In the end add the city 0 to the closer end of all 
the paths.

The disadvantage of the parallel proceeding 
methods is that they usually require more 
computing time. Namely, if trying to add an edge to 
a path, the time limit is exceeded and therefore this 
edge is not added, this method may try to add other 
edges with a low chance of being added to this route 
without any limitation. Thus, we will denote this 
method as a non-limited savings method (NSM).

In order to reduce these unproductive trials and 
thus make the method faster, we can modify it so 
that it always marks such a path (route) as fi nished, 
when the time limit has once been exceeded, and 
does not add any more edges to these marked 
paths. We will denote this modifi cation as a limited 
savings method (LSM).
1. For all pairs of non-central cities (i, j) compute the 

savings sij = ci0 + c0j − cij.

2. Process the edges according to the descending 
order of the savings sij.

3. If the edge is not adjacent to any route marked as 
fi nished 

 then when by adding an edge we obtain a set of 
vertex disjoint paths and the length of each path, 
a� er joining the city 0 to the its closer end, does 
not exceed the time limit L, then we add it to the 
solution 

 else mark the adjacent path(s) as fi nished.
Repeat the procedure until each city lies on 
some of the paths and by joining arbitrary two 
paths the allowed time limit is exceeded.

4. In the end add the city 0 to the closer end of all 
the paths.

Time complexity of the used methods
Let us concentrate on the complexity of single 

methods from the theoretical point of view.
As stated above, the nearest neighbour method 

is the simplest one of the used methods. During its 
procedure, each of the n cities is visited once when it 
is added to a route and there are at most n other trials 
to add a city, which are unsuccessful because of 
exceeding the time limit L. Adding a city to a route, 
the operations concerning deleting this city from 
the following consideration takes time O(n). Thus, 
the whole procedure requires time O(n2).

The sequential savings method at the beginning 
computes savings of all O(n2) edges, each in 
a constant time and thus altogether in time O(n2). 
Then it sorts out these edges according to their 
savings in time O(n2 log n) and within this sorting it 
also sorts out the incident edges for each city. During 
steps from 2 to 5, each of the n cities is added once to 
a route and within this operation, the most complex 
action is deleting this city from the following 
consideration in time O(n) (all the other operations, 
i.e. choosing this city according to the best savings 
and re-computing the length of the route take 
a constant time); and there are at most n other trials 
to add a city, which are unsuccessful because of 
exceeding the time limit L. Steps 2 to 5 take time O(n) 
and thus the whole procedure takes time O(n2 log n).

The non-limited savings method and the Habr 
frequencies approach are analogous and their 
computation complexity, as will now be shown, 
is the same. The savings as well as the (modifi ed) 
Habr frequencies can be computed in time O(n2). 
The remaining part of the procedures of both 
methods diff ers only in the NSM using the savings 
and the HFA using the frequencies, otherwise they 
are completely identical. Again, the sorting takes 
time O(n2 log n). Consequently, there is a possibility 
that we try to add almost all n2 edges. Processing 
each of them, similarly to the previous methods, 
we may spend time n at most. Therefore, the 
whole procedure requires time O(n3) in both these 
methods.

In case of the limited savings method, the 
initialization activities (computing savings and 
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sorting the edges) take time O(n2 log n). Then, an edge 
is added to a route at most n times and operations 
concerning it again take time O(n). A trial to add 
an edge, when the time limit L is exceeded and the 
route is marked as fi nished, happens at most n times 
and operations concerning it take a constant time. 
Thus, the overall computation time of the LSM is 
O(n2 log n).

Executing the neighbour search heuristic, one 
iteration of step 1 and O(log n) iterations of step 2 are 
carried out. Within each iteration, the maximum 
number of edges which are added is n and the 
technical operations concerning each of these 
additions take time at most O(n). That is why the 
computation complexity is O(n2 log n).

Test computations and their results
For testing, we took two types of randomly 

generated cases. In both types, all cities were 
located in a circle with a 100-time-unit diameter 
(the time necessary for travelling along a given 
route is supposed to be directly proportional to the 
distance).

In the fi rst type, the central city was in the center 
of this circle. Then, the area between a circle given 
above and another circle with the diameter of 20 
time units with the same center was considered. 
In this area 20 cities were originally randomly 
generated with the uniform distribution. Then the 
closest pairs of the cities were joined into “regions” 
so that four of them at the most might form one 
“region” and the fi nal number of non-central cities 
(“regions”) was 12.

The second type diff ered from the fi rst one in 
the location of the central city which was the most 
remote one from the middle (the closest one to the 

circle boundary) while the city in the middle was an 
ordinary one.

The time limit L was set in both types to 250.
Ten instances of the fi rst type were computed 

using all three versions of the SM, the NNM, the 
HFA and the NSH. The results are summarized in 
Tab. I. It contains the values of the objective function 
(the sum of the time necessary for travelling along 
all the routes) in a percentage form standardized 
according to the HFA (i.e. 100 % present the objective 
function values obtained by the HFA). The HFA 
was selected as the base for the results comparison 
because it proved to be an excellent method with 
very good results in Kučera, Houška, and Beránková 
(2008). Interestingly, the objective function values 
obtained by the HFA ranged from 462.8 (Case 2) to 
608.3 (Case 7) time units.

As we had expected, all the versions of the SM 
provided identical or worse results than the HFA, 
while, unexpectedly, in two cases the NNM gave 
a slightly better solution than the HFA. The NSH 
provided results of very diff erent quality in single 
cases. Among the SM versions, the NSM proved 
to be the best, only slightly less than 4 % worse on 
average than the HFA. Both remaining versions 
were about 10 % worse on average than the HFA and 
they were even worse than the NNM, too.

However, it is interesting to note the diff erence 
between the results quality by these methods in 
each case. Thus, some properties which would have 
an infl uence on the quality of these solutions were 
searched for. We discovered that in the case of the 
LSM, there is an important dependence of the results 
on the ratio between the farthest and the nearest city 
from the central one among the cities lying on the 
convex hull of the set of all cities. High values of this 
ratio properly indicate that the central city does not 

I: Test case results – the fi rst type

NNM SSM LSM NSM HFA NSH E

Case 1 112.9% 106.2% 114.6% 100.0% 100.0% 99.9% 1.68

Case 2 122.4% 117.9% 100.0% 100.0% 100.0% 92.4% 1.71

Case 3 105.5% 102.3% 116.9% 102.3% 100.0% 120.2% 1.76

Case 4 97.4% 111.7% 119.0% 111.7% 100.0% 102.2% 2.10

Case 5 99.8% 116.1% 107.3% 105.9% 100.0% 112.8% 1.26

Case 6 100.0% 106.9% 106.9% 109.8% 100.0% 110.7% 1.30

Case 7 107.3% 100.0% 100.0% 100.0% 100.0% 106.5% 1.32

Case 8 107.2% 108.8% 100.8% 100.0% 100.0% 104.2% 1.52

Case 9 104.0% 112.3% 113.5% 103.7% 100.0% 109.1% 1.24

Case 10 107.1% 118.2% 114.6% 102.5% 100.0% 99.8% 1.66

II: Test case results – the second type

NNM SSM LSM NSM HFA NSH E

Case 1 97.6% 112.3% 127.4% 106.5% 100.0% 97.6% 2.49

Case 2 115.1% 103.7% 128.6% 100.1% 100.0% 105.1% 3.61

Case 3 115.5% 91.4% 126.3% 91.4% 100.0% 124.6% 3.97

Case 4 109.5% 106.1% 130.7% 106.1% 100.0% 108.1% 2.89
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lie near the middle of the actually serviced region. 
This property will be called eccentricity and it is 
added to Tab. I. It is clear that the LSM achieves good 
results for instance with a low eccentricity and vice 
versa (perhaps with the exception of cases 2 and 9). 
This dependency was also discovered by the use of 
regression analysis.

Another way to confi rm this dependency was to 
solve the second type test cases. They show much 
higher eccentricity and the LSM would have much 
more problems than in the fi rst type of cases. Four 
such instances were computed and their results in 
Tab. II show that this hypothesis is true.

CONCLUSION
If we want to apply the savings approach to the 

TLVRP, the NSM seems to be the right version for 
doing it. It provides the same or a slightly worse 
solution that the HFA, but the procedure of 
computing savings is faster and less complex than 
that of the computing Habr frequencies.

Nevertheless, the LSM also shows to be useful 
because of its good results for the instances of 
low eccentricity. From this point of view, this is 
a complementary method to the tree approach 

investigated by Kučera, Houška, and Beránková 
(2008) which is suitable for tasks of high eccentricity. 
In addition, in most cases, it diff ers in solution from 
all the other methods studied here.

In practice, however, companies seldom pay 
enough attention to dealing with VRPs, especially if 
transportation is not their principal work load and if 
a transportation task of a medium size is concerned 
only.

Kučera and Jarkovská (2010) present a case 
study of NOPEK Bakery in Vysoké Mýto. They 
demonstrate the eff ectiveness of the use of suitable 
approximation methods during the planning of the 
bakery products delivery to its customers. By the 
optimization of one of the so-called “fast deliveries” 
they succeeded in the reduction of a number of 
vehicles needed for the delivery – about 18% – 
which turned out necessary. Similar savings of 
all “fast deliveries” in the company may lead to 
a considerable tenure price reduction (by 17 million 
CZK) and profi t increase (by 0.6 mil CZK), and thus 
to a signifi cant profi tability growth between 2 and 
2.5%. Kučera and Jarkovská (2010) also managed to 
ensure a balanced use of the vehicles. This made 
it possible for the bakery to deliver the goods to its 
customers in deadlines more convenient for them.

SUMMARY
The problem of the delivery optimization of specifi c material can in reality be encountered very 
o� en. The delivery is usually realized by a circular or round trip which, in comparison with the 
implementation of each route from the supplier to the consumer, saves expenses for individual 
gateways from the same supplier and/or trips to one consumer. There exist many tasks of this kind 
and in general they are referred to as vehicle routing problems (VRP). Practically all of them belong 
to the NP-hard problems, for which there is no effi  cient algorithm fi nding their theoretical optimum. 
Thus, the only way to obtain some solution effi  ciently or in a reasonably short time is to use some of 
the heuristics (approximation methods), which give only “good” or “close to optimal” solution, not 
exactly optimum.
In practice, however, companies seldom pay enough attention to dealing with VRPs, especially if 
transportation is not their principal work load and if a transportation task of a medium size only is 
concerned. Let us recall a case study where, using suitable heuristics, a company reduced the number 
of vehicles needed for the delivery by 18% thereby increasing the profi tability by 2 to 2.5%.
In this paper a special case of the VRP was studied: so called time limited vehicle routing problem 
(TLVRP). One central and a certain number of other cities (points, places, nodes …) were determined 
and a time limit within which it was necessary to visit all the cities using vehicles starting form the 
central city (and it was of no importance how the vehicles got back to the central city). The aim was to 
test some heuristics applicable even for “manual” computing when a route was chosen in a company, 
primarily several modifi cations of famous savings method by Clark and Wright, in some test cases. 
This study also discussed how the quality of solutions obtained using single heuristics depends on 
the properties of the tasks.
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