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Abstract

ČERNÝ, M., PELIKÁN, J.: A note on imperfect hedging: a method for testing stability of the hedge ratio.  Acta univ. 
agric. et silvic. Mendel. Brun., 2012, LX, No. 2, pp. 45–50

Companies producing, processing and consuming commodities in the production process o� en 
hedge their commodity expositions using derivative strategies based on diff erent, highly correlated 
underlying commodities. Once the open position in a commodity is hedged using a derivative 
position with another underlying commodity, the appropriate hedge ratio must be determined 
in order the hedge relationship be as eff ective as possible. However, it is questionable whether the 
hedge ratio determined at the inception of the risk management strategy remains stable over the 
whole period for which the hedging strategy exists. Usually it is assumed that in the short run, the 
relationship (say, correlation) between the two commodities remains stable, while in the long run it 
may vary. We propose a method, based on statistical theory of stability, for on-line detection whether 
market movements of prices of the commodities involved in the hedge relationship indicate that 
the hedge ratio may have been subject to a recent change. The change in the hedge ratio decreases 
the eff ectiveness of the original hedge relationship and creates a new open position. The method 
proposed should inform the risk manager that it could be reasonable to adjust the derivative strategy 
in a way refl ecting the market conditions a� er the change in the hedge ratio. 

stability analysis, imperfect hedging, changepoint detection

1 INTRODUCTION
Companies producing, consuming, processing or 

storing commodities o� en face the risk of changes 
in market prices. They implement various hedging 
strategies to minimize that risk. For example, 
airline companies o� en need to hedge their future 
purchases of kerosene; producers of agricultural 
commodities need to hedge their future sales; 
companies processing metals need to hedge the 
metal held on stock.

In this text we will deal with the example of an 
airline company wishing to hedge a future purchase 
of one tone kerosene. The company uses forwards/
futures the underling variable of which is diff erent, 
but highly correlated with kerosene. As an example 
we say that the company uses crude oil futures. This 
situation happens whenever we need to hedge an 
exposition in a commodity for which derivatives are 
not available; then it is necessary to choose another 
commodity, as highly correlated as possible, which 
is traded at derivative markets.

When such a risk management strategy is 
introduced, the basic question is: what is the 
optimal volume of crude oil futures to be bought for 
hedging the open position in one ton of kerosene? 
That is, shall the exposition in one ton of kerosene 
be hedged using the volume of 1.1 t, 1.2 t, 1.3 t or 1.4 t 
crude oil futures? That ratio is known as hedge ratio. 
At the inception of the risk-management strategy, 
the hedge ratio is usually estimated from historical 
data. Of course, a wrong estimate may be expensive: 
if the hedge ratio is estimated too low, then a certain 
position in kerosene remains unhedged. On the 
other hand, if the hedge ratio is estimated too high, 
then a new open position in crude oil originates.

In order the risk-management strategy make 
sense it is necessary to assume that there is a stable 
relationship between the two commodities, 
say x = crude oil and y = kerosene. Without this 
assumption, hedging of y using x would not make 
sense. However, during the life of the strategy 
it might happen that the assumption is more or 
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less violated. For example it may happen that the 
correlation between x and y vanishes at all. Then 
the original risk-management strategy changes into 
a pair of independent speculative positions in two 
uncorrelated variables. The main aim of this text is 
to develop a method for detection of a less serious 
violation of the assumption, which is more probable 
to occur in practice. We shall deal with the situation 
that the hedge ratio changes during the life of the 
risk-management strategy. We develop a tool for 
detection of this threat. The tool should suggest the 
risk manager to adjust the strategy accordingly to 
minimize the risk arising from the change.

The method is an extension of the approach 
studied in Černý (2011b) where the problem 
of estimation of the hedge ratio at the time of 
inception of the hedging strategy was considered. 
The approach has been also successful in volatility 
analysis; see Černý (2008). 

The problem of stability of the hedge ratio in time 
has been also considered, though from a diff erent 
perspective, in Choudhry (2009), McMillan (2005) 
and Lien and Shrestha (2008).

2 The relationship between x and y
We have a risk management strategy where the 

open position in a variable y (kerosene) is hedged 
with a futures position in another variable x (crude 
oil). Assume that a long-term relationship between y 
and x is in one of the following forms:

Δyt = Δxt + t, (1a)

Δyt =  + Δxt + t, (1b)

yt = xt + t, (1c)

yt =  + xt + t, (1d)

Δlog yt =  + Δlog xt + t, (1e)

where t is the index of time, Δ is the diff erence 
operator, t is the random error and  and  are 
parameters. (The assumptions on t will be specifi ed 
later.) Figure 1, where real data are plotted, shows 
that the assumption of the relationship between y 
and x of type (1a)–(1e) is indeed reasonable.

The parameter  in (1a)–(1d) denotes the hedge 
ratio. In (1e), the hedge ratio takes the form e. (The 
parameter  is irrelevant in our context; though it is 
sometimes involved in the model, usually to achieve 
a better goodness-of-fi t, its value does not aff ect the 
hedge eff ectiveness.)

Let t be homoskedastic with unit variance. The 
random errors t are usually assumed in one of the 
forms

t = t,  t = xtt,  t = ytt,

where  > 0 is a parameter. As an example we shall 
assume the model

yt =  + xt + xtt. (2)

The fact that variance of the error term is 
proportional to the price level xt is a traditional 
feature of fi nancial time series. However, the 
method of Sections 3–4 could be used for the other 
discussed models as well. 

The hedge ratio  can be estimated as the absolute 
term in the homoskedastic model

1t
t

t t

y
x x

      (3)

which is equivalent to (2).
We shall assume that t’s are such that the model 

(3) can be estimated with Ordinary Least Squares 
(OLS).

 
1: Prices of kerosene and crude oil
Source: Lu� hansa Annual Report
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3 A tool for testing stability
Assume that the hedge ratio  was estimated from 

historical data using the model (3) at the inception of 
the risk-management strategy. Let T0 denote the time 
of inception of the strategy. Assume further that now 
we are in time T* > T0 (but still before maturity of 
the strategy) and ask a question whether the hedge 
ratio has changed or not. That is, we ask whether the 
market data from the period from T0 up to T* give 
evidence that  estimated at T0 is no more valid and 
should be re-estimated. 

First we need to derive a statistic for testing the 
null hypothesis that the ratio remains stable. 

Assume that the set of data x1, …, xn and y1, …, yn 
is available. In the derivation of the test, we regard 
y1, …, yn as random variables. Let us test the 
hypothesis

H: the relationship (3) is valid for all t  {1, …, n} 

against the alternative

A: there is a time   {3, …, n − 3} such that 

0 0
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where (0, 0) ≠ (1, 1) and  are unknown parameters. 
Assuming that t are N(0, 1) independent, we can 
construct the log-likelihood ratio
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where fA and fH denote the joint distribution of 
yt
xt

under A and H, respectively. If we assume that  is 
fi xed, we get the log-likelihood test for the existence 
of change in the regression relationship in time  of 
the form

1: 1: 1:
22
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if the standard error  is known, or 
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if  is unknown (which is the most frequent case in 
practice). The symbol RSSi:j stands for the residual 
sum of squares from OLS-estimated regression 
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using the data set t  {i, i + 1, …, j}. More precisely, 
denoting 
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where I denotes the unit matrix and || · || denotes 
the L2-norm.

Changing normalization, instead of U we will use 
an equivalent statistic
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The reason for preferring V to U is purely 
technical and will be apparent later. Relaxing the 
assumption that  is fi xed we obtain the statistic

{3, , 3}
max tt n

V V
 




. (4)

We will also need the statistic V applied to a subset 
{i, i + 1, …, j} of the set of all observations {1, …, n}. 
Thus it will be useful to denote

:
: { 2, , 3}
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We shall need critical values for the statistic V 
(or Vi:j) under H. The statistic V, being the maximum 
of dependent B1, n/2 − 2-distributed random variables, 
has a compli cated distribution; in fact, an exact 
formula is not known.

Fortunately, the statistic V is essentially the same 
statistic as investigated by Worsley (1983); this is why 
we have used Vt instead of Ut in (4). Worsley derived 
a Bonferroni-type approximation (see also Černý, 
2011a) of the distribution of V in the form
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Using binary search over W(z), it is 
computationally feasible to derive the z0-quantile 
for V given the level z0. This z0-quantile will be 
referred to as the Worsley’s z0-critical value.

If we need to work with the test (5) instead of (4), 
i.e. if we are restricted to a subset of observations, 
the Worsley’s approximation gets the form
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The z0-quantile derived by binary search over 
Wi:j(z) will be denoted as Wi:j

−1(z).
If H is rejected, then (4) also suggests a natural 

estimator of the unknown value  of the form
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or, in the restricted form,
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4 An iterative approach
Assume that the historical, say daily data x1, …, xn 

and y1, …, yn are sorted in the way that (x1, y1) are the 
most recent (say, today’s) prices and (xn, yn) are the 
endmost prices. With this convention we have T* = 1 
(today), T0 > 1 (day of hedge inception) and n = the 
endmost observation available (say, quoted several 
years ago).

The simplest approach is: test H using the 
statistic V1:T0

 according to (5) at a chosen level z0; the 
critical region is given by the condition V1:T0

 > W−1
1:T0

. 
However, this simple approach suff ers from (at least) 
two drawbacks.
i) If the changepoint  exists and it occurred in time 

T0 or in a short period a� erwards, then the test 
probably will not be able to detect it.

ii) There may have been more than one changepoint 
in the period {1, ..., T0}, but we constructed the 
test using the single-changepoint alternative.

We overcome the drawbacks in the following 
way. We apply the test iteratively. We choose 
a small constant q, say q = 20 and run the following 
algorithm:

1. for t := q to n do
2. if V1:t>W1:t

−1(z0) then 
3.   if ̂1:t ≥ T0 then 
4.   report “changepoint ̂1:t detected”
5.   estimate  using only the data {1, 2, …, ̂1:t}
6.  else
7.   report “no changepoint a� er T0 detected”
8.  end if
9.  stop
10. end if
11. next t
12. report “no changepoint found” and stop.

The procedure processes the data iteratively. First, 
only a recent data history is taken into account; then, 
as t grows, the data history involved is longer. When 
we fi rst exceed the critical value, we declare that the 
point of change has been detected. Observe that if (ii) 
holds, this procedure is likely to detect the most recent 
changepoint. This point is crucial for correctness of 
the step 5.

If the estimated point of change occurred before 
T0, then the situation is “safe” (step 7) but if the 
estimated point of change occurred at T0 or later, 
the step 5 estimates the new value of hedge ratio  
(say, using (3)) using only the data a� er the point of 
change. Then the risk manager assesses whether the 
newly estimated value of  diff ers signifi cantly from 
its original value determined at the hedge inception. 
Then she/he can adjust the volume of the hedging 
derivative appropriately.

5 Example
To visualize the method we plot the processes

1
1: 1: 0 1:ˆ, ( ),t t t t t tV t V W t W z        

for t = q, q + 1, …, where q = 20, with the choices 
z0 = 5%-level and z0 = 1%-level. (The scaling factor t in 
the defi nition of Ṽt and W̃t has been added, without 
loss of generality, to make Figure 2 more transparent.) 

Such a plot also shows how stable the value ̂1:t 
output in step 4 is. (We say that the value ̂1:t is fully 
stable if, for any t and t’ for which the conditions 
V1:t > W−1

1:t(z0) and V1:t’ > W−1
1:t’(z0) are met, it holds 

̂1:t = ̂1:t’.) Of course, by the stochastic nature of 
data, we cannot expect full stability; but we roughly 
say that the estimator ̂1:t is stable if it does not 
signifi cantly change even when a longer history of 
data is taken into account in the test.

Results of a simulated example are shown in 
Figure 3. We generated a trajectory of kerosene xt 
for t = 1, …, 500 (which corresponds to two years if 
1 year = 250 business days) as a lognormal random 
walk varying between $20 and $85, see Figure 2. 
The crude oil process yt was simulated using (3) with 
t ~ N(0, 1) independent and
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  1.4 for t  {1, …, 169}, = 0.1,  = 0,  =  1.3 for t {170, …, 500}.
 (6)

Observe that the variance is quite high: if the price 
of x is $100, the standard error is $10.

Assume that the time of inception of the hedge 
was T0 = 250 (that is, the risk-management strategy 
was commenced one year ago). At that time, say that 
the hedge ratio was chosen at the level original = 1.2.

In Figure 3 it can be seen that the procedure 
detects ̂1:t = 134. Hence we have an indicator that 
over the last year, a change has indeed occurred. 
Observe that 134 is an inexact estimate – by (6) we 
know that the point of change appeared 169 days 
ago.

If we don’t stop in step 9 when the 1% level is 
fi rst exceeded and iterate further, we arrive at the 

estimate ̂1:t = 149 (which is a value closer to the true 
value 169).

It can be seen in Figure 3 that the estimate ̂1:t = 149 
is stable. Hence, the method suggests to re-estimate 
the hedge ratio in step 5 either using either last 133 
or last 148 observations, the remaining (“old” ones, 
i.e. the observations before the estimated point of 
change) being omitted.

We know that the true value of the contemporary 
hedge ratio is 1.4. The resulting OLS-estimates 
based on (3) are 

̂from data t  {1, …, 133} = 1.43 and ̂from data t  {1, …, 148} = 1.46.

Hence the risk manager is now suggested to adjust 
the volume of the hedging derivative from the 
original volume original = 1.2t or crude oil per ton of 
kerosene to new = 1.43t or 1.46t of crude oil per ton 
of kerosene. 

 
2: Simulated evolution of prices of kerosene (yt) and the crude oil (xt) as a function of time (t)
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3: The process Ṽt, Worsley’s 5% and 1% critical values (W̃t) and the process ̃ t
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6 SUMMARY AND CONCLUSIONS
We have proposed an iterative approach for detecting a possible point of change in the hedge ratio. 
The approach helps in detection whether the hedge relationship should be adjusted before maturity 
to achieve better hedge eff ectiveness. Several questions remain open. In particular, the estimator ̂1:t 
of the point of change is not exact. Therefore, when estimating the adjusted value of the hedge ratio, 
it might be also appropriate to take into account the possible error in ̂1:t. Another problem is that 
the test, by its essence, is likely to detect the existence of the point of change a� er some time of its 
occurrence. (Fortunately, the more signifi cantly the hedge ratio changes, the earlier the test will detect 
the change.) It would be suitable to analyze the delay in more detail and modify the method in a way 
making the delay as short as possible. It would be also suitable to quantify possible losses induced 
both by the imprecise estimate ̂1:t and by the delayed detection of the point of change.
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