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Abstract
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Mendel. Brun., 2012, LX, No. 1, pp. 137–144

This paper describes the method of derivation of mathematical description of a cam orbit in rotary 
rakes (hay aggregators). At fi rst, the authors describe basic construction elements of the rotary hay 
rake mechanism and their mutual links and relationships. Therea� er, they defi ne the origin and the 
orientation of the system of coordinates, in which all calculations are carried out. In the next step they 
defi ne basic requirements concerning the assurance of an optimum functioning of cam mechanisms 
as well as their transformation into mathematical equations. These requirements represent a base for 
the mathematical formulation of an optimum transition curve and it is emphasized that an optimum 
formulation of parameters of this curve is very important. In the course of calculation, they use also 
a normalized transition curve, which is used for the optimizations of the total number of parameters of 
the transition curve. Therea� er, they take into account mechanical and operational parameters of the 
hay aggregators and convert the optimum transition curve to that part of the space curve, which agrees 
at best with these parameters. Finally, the whole cam orbit is constructed using individual segments 
and presented as a sequentially defi ned space curve. Its individual parts concur sequentially to the 
level of the second derivation and are described as explicit mathematical functions of mechanical 
and operational parameters of the hay aggregator. The defi nition of the system of coordinates, the 
execution phase of calculations and the fi nal shape of the cam orbit are illustrated in graphs.

system of coordinates, cam orbit, transition curve, sequentially defi ned functions, space curve

In the technological line of forage harvesting, 
the rake should assure an effi  cient and considerate 
raking of spread-harvested forage. The working 
width of one rake segment should be as great as 
possible so that the manipulation with the dry 
material would be minimized and the shattering of 
dry leaves reduced.

Because of their high performance, rotary rakes 
are the most frequently used of all hay aggregators 
(Šmíd, 2007).

They have the following structural elements: cam 
guide, cam itself, cam arm, carrying attachment, and 
working fi ngers (Fig. 1). 

In the course of one working cycle, the carrying 
arms rotate together with cam arms around a fi x 
cam guide and in this way they transfer the motion 
to gathering arms fi tted with working fi ngers. These 
working fi ngers transpose the harvested material (i.e. 
hay) and push it aside (ca 2/3 of the cam pathway). 

In the remaining part of the cam pathway (ca 1/3), 
the gathering arms turn due to the action of cam 
arms by approximately 90° and the fl exible working 
fi ngers leave the harvested material and move back 
to a horizontal position. The harvested material is 
thrown to a grabbing cloth and forms a swath of hay 
(Šmíd & Bartoň, 2008 b).

The shape of cam guide is very important because 
it assures not only a correct working of the rotary 
rake but also its high operational reliability.

MATERIALS AND METHODS

Importance of cam guides
The cam guide represents a stationary part of 

all types and models of rotary rakes. It is mounted 
symmetrically around the vertical axis of rotation of 
bearing arms and assures their rotation around their 
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longitudinal axis and, thus, also li� ing and tilting 
of working fi ngers into the swath operation. This 
means that the shape of cam guide determines not 
only the beginning and the end of swath operation 
but also the velocity of li� ing and tilting of working 
fi ngers. The angular speed and acceleration of 
bearing arms and working fi ngers (as well as the 
torsion forces aff ecting these bearing arms along 
their longitudinal axis) change in dependence on 
the shape of the cam guide. This means that the cam 
guide infl uences not only operational parameters of 
rotary rakes but also their longevity and resistance 
against mechanical damage, above all due to a long-
term load of cams and bearing arms (Šmíd & Bartoň, 
2010). 

Defi nition of the system of coordinates
Šmíd & Bartoň (2009 a) mentioned that, because 

of rotation of cam arm and bearing arm around their 
vertical axis, the best solution of hay aggregators 
design is to use the cylindrical system of coordinates 
and to place the axis of rotation at the origin of 
coordinates to the height equal to the horizontal 
position of the cam arm. The axis of the system 
of coordinates can be identifi ed with the axis of 
rotation. The cam position, i.e. the shape of the 
cam orbit, can be examined from the viewpoint 
of the relationship existing between the cam 
height z(t) on the one hand and its distance from 
the axis of rotation r(t) and the angle of sight (t) 
on the other. The calculation into the rectangular 
system of coordinates is then performed using the 
relationship [x = r(t)cos((t)), y = r(t)sin((t)),z(t)]. 
The x-axis will be directed to the point occupied by 
the cam at the moment of horizontal position of the 
bearing arm, i.e. in time t = 0. The angle of sight will 

be then derived (measured) from the direction of the 
x-axis.

Shape requirements
The end of the cam arm, which rotates the bearing 

arm, moves round the axis of rotation on a circular 
orbit with the radius R. The axis of rotation and 
the end point of cam arm defi ne the vertical plane, 
which rotates around the axis of rotation. However, 
in this plane the cam makes only a pendulous 
movement that can be characterized by the angle 
of cam arm displacement or by the z(t) coordinate 
of the cam. The course of this coordinate plays 
a decisive role in the determination of the course of 
the z(t) coordinate. 

When starting from the aforementioned 
defi nition of the origin of the system of coordinates, 
it is quite obvious that both extreme positions (i.e. 
the upper dead point and the lower dead point) 
are identical as far as the absolute value of the 
coordinate z is concerned. For this value we can use 
the symbol h and the moment when the cam must 
leave the lower dead point will be denoted as t1. The 
time interval of its transition to the upper dead point 
can be denoted as dt. The moment when the cam 
must leave the upper dead point will be denoted as 
t2. This means that within the time interval t1+dt <= 
t <= t2 the cam is in the upper dead point. Similarly, 
the time interval of its transition from the upper to 
the lower dead point can be denoted as dt2. In case 
that we choose the direction of motion in such a way 
that the cam will reach at fi rst the upper dead point, 
individual moments may be arranged into the series 
0 <= t1 < t1 + dt < t2 < t2 + dt2 < T, where T is the 
period of one rotation. Evidently, it is necessary that 
z(0) = z(T) (Šmíd & Bartoň, 2009 b).

1: Basic components and definition of the system of coordinates
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To prevent the occurrence of immediate impulses 
of force aff ecting the cam it is necessary to assure 
that the guiding of cam will have the form of 
a smooth curve. Although such a curve can be 
defi ned stepwise, it must be continuous (including 
the continuity of its fi rst and the second derivations). 
In this case the cam orbit will disintegrate into four, 
mutually independent segments. The fi rst of them 
is the ascending transition segment, the second 
one represents the holding time in the upper dead 
point, the third one is the ascending transition 
segment and the fourth one represents the holding 
time in the lower dead point. The mutual linkage of 
these four segments must respect the condition of 
continuity (also including the continuity of its fi rst 
and the second derivations).

Mathematical derivation of the shape of the 
transition segment

From the mathematical point of view it is possible 
to defi ne conditions of the course of the z(t) 
coordinate of a general transition curve as

 1: 1p z t h 

 2: 1p z t dt h  

 
1

3: 0
t t
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dt 
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t t dt
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.

Condition p1 – The coordinate z is at the moment t1 
in the lower dead point.

Condition p2 – The coordinate z is at the moment 
t1 + dt in the upper dead point.

Condition p3 – The continuity of the 1st derivation. 
The cam velocity must not change 
non-continuously (i.e. by jumps).

Condition p4 – This condition is the same as that 
concerning continuity of the 
ascending transition segment and 
the holding time in the upper dead 
point. 

Conditions p5 and p6 are similar to those 
concerning continuity of the second 
derivation (the cam acceleration of 
must not change in a discontinuous 
manner).

It is a problem to fi nd such a suitable function, 
which would meet the aforementioned conditions. 

It seems that a polynomial could be suitable to 
solve this problem because of the existence of 6 
conditions of at least 5th degree. For this reason let’s 
try to use polynomial of the 6th degree:

2 3 4 5 6
0 1 2 3 4 5 6:z t c c t c t c t c t c t c t        .

Basing on conditions of continuity, it is possible to 
defi ne the unknown coeffi  cients c0 … c6.

2 3 4 5 6
0 1 2 3 4 5 61: 1 1 1 1 1 1p c c t c t c t c t c t c t h         .

     2 3
0 1 2 32 : 1 1 1p c c t dt c t dt c t dt       

     4 5 6
4 5 61 1 1c t dt c t dt c t dt h      

2 3 4 5
1 2 3 4 5 63 : 2 1 3 1 4 1 5 1 6 1 0p c c t c t c t c t c t      

     2 3
1 2 3 44 : 2 1 3 1 4 1p c c t dt c t dt c t dt       

   4 5
5 65 1 6 1 0c t dt c t dt    

2 3 4
2 3 4 5 65 : 2 6 1 12 1 20 1 30 1 0p c c t c t c t c t     

   22 3 46 : 2 6 1 12 1p c c t dt c t dt     

   3 4
5 620 1 30 1 0c t dt c t dt     .

When considering conditions p1 and p2, it is 
obvious that we can simplify the fi rst two equations 
by dividing all six aforementioned conditions by h 
and introducing new coeffi  cients k0 … k6 pursuant 
the relationship

0 1 2 3 4 5 6
0 1 2 3 4 5 61: , , , , , ,c c c c c c csu k k k k k k k

h h h h h h h
        . 

The other equations will remain de facto 
unchanged. This signifi cant simplifi cation does 
not mean that the onset of time measurement 
would be shi� ed to the moment of the beginning 
of the transitory segment of cam movement (i.e. 
substitution)

2 : 1 0,su t 

which will result in a really radical reduction of the 
solution diffi  culty. A shi�  to the original beginning 
of time measurement can be done by means of the 
substitution t = t − t1.

This means that a� er performed substitutions the 
above conditions will change to the term:

01: 1p k  

2 3 4 5 6
0 1 2 3 4 5 62 : 1p k k dt k dt k dt k dt k dt k dt       

3 : 1 0p k 
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2 3 4 5
1 2 3 4 5 64 : 2 3 4 5 6 0p k k dt k dt k dt k dt k dt      

25 : 2 0p k  .

2 3 4
2 3 4 5 66 : 2 6 12 20 30 0.p k k dt k dt k dt k dt     

As one can see, this simplifi cation is very 
important. Coeffi  cients k0, k1 and k2 can be directly 
substituted by 1 or 0. Regarding coeffi  cients k3 … k6, 

the remaining three equations p2, p4 and p6, can be 
solved as follows: 

 0 : 1k    1 : 0k 

   6 66
6 66

3 4 5 6 63 4 5

3 10 3 420: , , , .
k dt k dtk dtsol k k k k k

dt dt dt

           
  

This means that, a� er the substitution, the 
transition curve will be

     6 3 6 4 6
6 6 6 6

63 4 5

20 3 10 3 4
: 1 .

k dt t k dt t k dt
z k t

dt dt dt
   

     

It is also obvious that it was not necessary to use 
the coeffi  cient k6. However, it is possible to fi nd 
out if it could not be used for an improvement of 
parameters of the transition curve. 

Regarding the fact that the transition curve is 
valid only for times z of the interval 0 <= t <= dt, it 
is possible to carry out a substitution t=q dt (with 
the condition 0 <= q <= 1) and develop a normalized 
transition curve zs.

   6 3 6 4
6 6: 1 20 3 10zs k dt q k dt q      

 6 5 6 6
6 63 4 .k dt q k q dt   

Now it is possible to compare courses of zs(k6,q) 
for various values of dt, e.g. dt = 0.4 and dt = 0.5.

As one can see in Fig. 2, the optimum course of 
normalized transition function could be for the 
value k6 = 0 (outlined as a bold black line). In Fig. 2, 
the red and blue curves correspond with values 
dt = 0.4 and dt = 0.5, respectively.

Determination of the optimum value of k6 
coeffi  cient

It is necessary to fi nd out such value of k6 

coeffi  cient, which assures that the value of the 
maximum increase of normalized transition 
function would be as low as possible. The maximum 
slope of the transition curve will be in the infl ex 
point of normalized curve, i.e. in the place where 

2

2: 0zsqq zs
q


 


or

   6 6 2
6 6: 6 20 36 10zsqq k dt q k dt q     

 6 3 4 6
6 660 4 30 0.k dt q k q dt    

The above equation enables to fi nd out that q 
value, which means that the equation is fulfi lled

6 2 12 6 2 12
6 6 6 6

6 6
6 6

40 5 1600 5 40 5 1600 51 1: 0,1, , .
10 10

k dt k dt k dt k dt
solq q

k dt k dt

       
   
  

The fi rst and the second value of q result from the 
setting of the form of normalised transition function 
and meet conditions p5 and p6. For that reason it is 
necessary to verify only the third and the fourth 
variant. 

The value q is inserted into the expression of the 
slope of normalized transition function, which is 
determined by

   6 2 6 3
6 6: 3 20 12 10zsq zs k dt q k dt q

q


      


 6 4 5 6
6 615 4 6 .k dt q k q dt   

2: A normalized transition function for values dt = 0.4 (in red) and dt = 0.5 (in blue) as dependent 
on k6 and q
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A� er the introduction of the third variant of 
solution (the fourth variant is quite identical)

6 2 12
6 6

6
6

20 5 400 513 :
10

k dt k dt
q q

k dt
   

 

the slope will be changed to the expression 

2 12
62 12

62 12 2 12
6 6

400 596 3 1563 : 400 5
125 25

k dt
zsqq k dt

k dt k dt


     

2 12
6

4 24 4 24
6 6

400 51152 4608 12 .
5 5

k dt
k dt k dt


  

Regarding the coeffi  cient k6, the maximum slope 
of normalized transition function will occur in the 
situation when the derivation of the curve slope 
(according to k6) is equal to zero

2 12
62 12

62 12 2 12
6 6

2 12
6 6

4 24 4 24
6 6

400 596 3 156400 5
125 25

0
400 51152 4608 12

5 5

k dt
k dt

k dt k dt
k k dt

k dt k dt

 
     
 

   
  

 

and thus

2 12 2 12 6 36 2 12
6 6 6 6

4 24 2 12
6 6

1600 400 5 1280033 :
25 260 3072000 153600 400 5

k dt k dt k dt k dt
dzs

k dt k dt

    
 
    

 5 24 2 12
6 6400 5 0.k dt k dt 

If the numerator of the fraction on the le�  side 
of the above equation is equal to zero then the last 
expression mentioned above is also equal to zero 

2 12 2 12 6 36 2 12
6 6 6 6: 14400 400 5 9 115200n k dt k dt k dt k dt    

4 24 2 12
6 62340 27648000 1382400 400 5 0k dt k dt     .

This equation may be converted to the expression

     8 48 6 6 2 12
6 6 6 6: 81 10 10 420 0.n k dt k dt k dt k dt    

which enables an easy calculation of the coeffi  cient k6

6 6 6 6 6

10 10 2 105 2 105: 0, , , , .solk k
dt dt dt dt

 
    

  

The fi rst solution, i.e. k6 = 0, can be used only in 
the case that there is a limit

6

2 12 2 12 6 36 2 12
6 6 6 6

4 24 2 12
6 6

5 24 2 120
6 6

1600 400 5 12800

260 3072000 153600 400 53lim 0,
25 400 5k

k dt k dt k dt k dt

k dt k dt

k dt k dt

    
 
     



because, a� er the insertion of k6 = 0, the numerator 
on the le�  side of the equation takes the zero value. 
As one can see, the value k6 = 0 can be used.

Maximum values of the slope of normalized 
transition function y can be obtained a� er the 
insertion of calculated values of coeffi  cient k6 into 
the expression zsqq3. In this case it is necessary 
to use for the calculation the limit because the 
numerators of fragments take a� er the insertion 
also the zero value. Therea� er, the remaining two 
values of coeffi  cient k6 can be introduced into the 
expression zsqq3 to calculate its value.

153_1: 3,750000000
4

zsqq  

1188 198 9003_ 2 : 3,801600000
625 3125

zsqq   

1188 198 9003_3 : 3,801600000
625 3125

zsqq   

2692 46 25003_ 4 : 4,075102040
1225 1225

zsqq   

2692 46 25003_3 : 4,075102040.
1225 1225

zsqq   

Now it is necessary to determine the value of q 
for calculated coeffi  cients k6. For the zero value, it is 
again necessary to use limit relations:

13_1:
2

q q 

33_ 2 :
5

q q 

23_3 :
5

q q 

 105 3 105
3_ 4 :

210
q q


 

0,6463850114q 

 105 3 105
3_5 :

210
q q

 
 

0,3536149894.q 

As one can see, the value k6 = 0 is fully satisfactory. 
In this case the gradient of the transition curve is the 
lowest and occurs in the middle of the transition 
interval.

This means that the fi nal form of the transition 
function is

3 4 5

3 4 5

20 30 12: 1 t t tz
dt dt dt

    
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and/or that the normalized transition function is

3 4 5: 1 20 30 12 .zs q q q    

Now it is possible to draw the normalized 
transition function (including its fi rst (blue) and the 
second (red) derivation)

2 3 4: 60 120 60zsq q q q  

2 3: 120 360 240 .zsqq q q q  

A general form of transition curve
The general form of transition curve can be 

obtained a� er the substitution t = t + t1 and 
multiplication of the whole curve by the value h, i.e.

     3 4 5

3 4 5

20 1 30 1 12 1
: 1 .

t t t t t t
Z h

dt dt dt

      
     
 
 

The shape of the descending transition curve
The descending gradient of transition curve can 

be derived in a practically identical manner; it is 
only necessary to exchange values +1 and -1 in the 
fi rst and the second conditions. The corresponding 
transition curve is expressed as 

3 4 5

3 4 5

20 30 122 : 1 t t tz
dt dt dt

   

and, a� er the substitution t = t + t2, dt = dt2, will take 
a general form

     3 4 5

3 4 5

20 2 30 2 12 2
2 : 1 .

2 2 2
t t t t t t

Z h
dt dt dt

      
    
 
 

Cam orbit coordinates 
The course of the cam orbit coordinate can be 

derived on the base of transition functions Z and 
Z2; this course is expressed as a sequentially defi ned 
function

     

     

3 4 5

3 4 5

3 4 5

3 4 5

1 1

20 1 30 1 12 1
1 1

1 2
: .

20 2 30 2 12 2
1 2 2

2 2 2
1
1

t t

t t t t t t
t t dt

dt dt dt
t t

Vz h
t t t t t t

t t dt
dt dt dt

t T
otherwise

  
 

            
 

   
           

 
  

  

The joint of cam arm (Fig. 1) rotates on a horizontal 
orbit with the radius R, at the height z = 0. Joint 
coordinates can be expressed as 

2 2: cos , sin , 0 ,t tKRV R R
T T
              

where  is the angular velocity of rotation, 

2: ,
T
 

where T = period of rotation. If the length of the cam 
arm is written as r, then this length must be constant, 
regardless to the cam position. The maximum angle 
that can be formed between the cam arm and the 
horizontal plane can be defi ned as . This means that 
the cam arm will tilt from the horizontal position by 
± . Then it must be valid that

 : sin .h r 

The distance between the cam and the rotation 
axis will change in dependence on the angle of cam 
tilt. If this distance will be denoted as  then it is 
valid that 

 22 2 ,r R vz  

 
3: A normalized transition function (in black) and its first (blue) and the second (red) derivations
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where vz is the coordinate z of the cam orbit; quite 
naturally, vz=Vz (the substitution for Vz would be 
too long). The last equation enables to calculate the 
distance of the cam  from the rotation axis.

Within the selected system of coordinates, the 
cam coordinates (i.e. of its orbit) will be

   2 2 2 22 2: cos , sin , ,t tVxyz R r vz R r vz vz
T T
                 
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
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 

            
 
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           

 
  

  

Finally, it is possible to draw the cam orbit, 
trajectory of the cam arm joint, and 200 positions of 
the cam arm during one revolution, e.g. for values

: 1, 1 0, 0,2, 2 0,55, 2 0,4, 0,3. 0,15, .
3

su T t dt t dt R r            

RESULTS AND DISCUSSION 
The method described above is a direct analytical 

calculation of the shape of cam orbit in dependence 
on required design values and requirements. It 
results in the fi nal shape of the cam orbit, which 
is described by means of common mathematical 
functions. The coordinates of cam orbit can be 
defi ned without the need to apply special design 

programmes. Although the calculation can be 
carried out in a conventional manner (i.e. on 
paper), the application of any simple computer 
can the whole process signifi cantly shortens and 
accelerates. According to Šmíd & Bartoň (2008 a), 
the simplest method of processing seems to be the 
application of any spreadsheet processor (e.g. Excel 
or Calcul), which are markedly cheaper than various 
specialized programmes, (e.g. Automa 2011, Solid 
Works 2011 or Sims 2011). Moreover, the work with 
these simple spreadsheet programmes is also much 
easier. 

Regarding the fact that the fi nal shape of cam 
orbit is not given numerically (in contradistinction 
to common outputs of programmes generating 
the cam mechanisms, viz. AV Engineering 2011, 
Generators (Generátory) 2011, and/or Křivky 
(Curves) 2011) but as a function of basic design 
dimensions of the mechanism), it is possible to carry 
out also subsequent analyses and mathematical 
modeling of the behavior of other constructional 
elements or operational forces, of corresponding 
moments of forces and/or outputs required for the 
motion of whole subsequent structural units. This 
is not possible when using cam orbits defi ned in the 
form of numeric series. Besides, it also could be too 
complicated. 

CONCLUSIONS
The analytical shape of the cam orbit represents 

a base for mathematic modeling of kinematics 
and dynamic properties of a whole category of 
agricultural machines – i.e. of rotary rakes. All these 
mechanisms are based on the same principle and 
for that reason it is possible to describe them by 
means of an identical mathematical model. For any 

4: Cam orbit (in black), trajectory of the cam join (in blue), and 200 positions of the cam arm (in red)
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concrete mechanism, it is only necessary to insert 
numeric values expressing concrete structural 
dimensions. This means that the calculation itself 
is not specially formulated for a concrete cam orbit 
but that it can be applied to any cam orbit of any 
arbitrary model of hay aggregators manufactured 
by various companies. The analytical form of this 
mathematical model can be then applied for the 

optimization of the whole machine, both from the 
viewpoint of design optimization and operational 
reliability. The aforesaid model of cam orbit 
enables a signifi cant simplifi cation, acceleration, 
cost-reduction and above all quality improvement 
of developing and designing of corresponding 
mechanisms.

SUMMARY
In the majority of hay aggregators/rakes, the cam mechanism is an important structural element 
because it determines the beginning and the end of swath. The shape of cam orbit is therefore 
dependent on structural and operational parameters of these mechanisms. In dependence on these 
parameters it is possible to derive an analytical shape of the spatial curve of cam orbit. The mathematical 
description of cam orbit is based on an optimized transition function. The authors derived it in detail 
and described also its application when calculating the cam orbit. The fi nal mathematical description 
of the cam orbit is an explicit mathematical function of basic structural parameters of this mechanism 
and can be used as a core element of the subsequent optimization of the whole rotary rake.

REFERENCES
ŠMÍD, V., BARTOŇ, S., 2010: Dynamický model 

shrnovače píce (A dynamic model of hay 
aggregator, in Czech) pp. 234–239. In: International 
student scientifi c conference, [CD-ROM], Nitra, 
ISBN 978-80-552-0376-8.

ŠMÍD, V., BARTOŇ, S., 2009: Dynamics of the Hay 
Aggregator FELLA TS 1602 HYDRO, pp. 773–
789. In: MendelNet ’09 Agro – Proceedings of 
International Ph.D. Students Conference [CD-
ROM], Brno, ISBN 978-80-7375-352-8.

ŠMÍD, V., BARTOŇ, S., 2009: Dynamika sběrače píce 
Fella TS 1602 (Dynamics of the rotary rake, Fella 
TS 160, in Czech) pp. 109–121. In: 6. letní školy 
aplikované informatiky Bedřichov. 1. vyd. Litera, 
Praha, ISBN 978-80-85763-53-9.

ŠMÍD, V., BARTOŇ, S., 2008: Matematický model 
kinematiky sběracího zařízení vozu Horal 
(A mathematical model of kinematics of the 
pick-up mechanism of the Horal hay baler, in 
Czech), pp. 112–117. In: 5. letní škola aplikované 
informatiky – Indikátory účinnosti EMS podle odvětví. 
Masarykova univerzita, Brno, ISBN 978-80-210-
4774-7.

ŠMÍD, V., BARTOŇ, S., 2008: Matematický model 
sběrače píce Fella TS 1602 (A mathematical model 
of the Hay Aggregator FELLA TS 1602, in Czech) 
pp. 1–19. In: MendelNET’08 Agro [CD-ROM], 
Brno, ISBN 978-80-7375-239-2.

ŠMÍD, V., 2007: Žací stroje s úpravou pokosu (Mower 
with conditioners, in Ctecg). Diploma thesis (in 
MS, dep. knihovna MENDELU v Brně), Mendelova 
zemědělská a lesnická univerzita v Brně, Brno, 
70 pp.

Automa: Simotion. online [cit. 2011-06-27]. 
Available at: <http://www.odbornecasopisy.cz/
index.php?id_document=32223>.

AV ENGINEERING. online [cit. 2011-06-25]. 
Available at: <http://www.aveng.com/ulohy_
vypocty_m.html>.

Cams. online [cit. 2011-06-27]. Available at: <http://
www.cs.cmu.edu/~rapidproto/mechanisms/
chpt6.html>.

Generátory vaček – WikiHelp online [cit. 2011-06-
27]. Available at: <http://wikihelp.autodesk.com/
Inventor/csy/2012/Help/0073-Aplikace73/0460-
Sestavy460/0551- Gener%C3%A1to551/0557-
Gener%C3%A1to557>.

Křivky. online [cit. 2011-06-25]. Available at: <http://
lubovo.misto.cz/_MAIL_/curves/krivky.html>.

Nápověda SolidWorks – Vačky. online [cit. 2011-
06-26]. Available at: <http://help.solidworks.
c o m / 2 0 1 1 / C z e c h / S o l i d Wo r k s / t o o l b o x /
AllContent/SolidWorks/NonCore/Toolbox/c_
toolbox_cams_overview.html?id=6b761191b0794
c7497adc62ee57c155d>.

Address

Ing. Vladimír Šmíd, doc. RNDr. Stanislav Bartoň, CSc., Ústav techniky a automobilové dopravy, Mendelova 
univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká republika, e-mail: vlasmi@centrum.cz, barton@
mendelu.cz


