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Abstract
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This paper describes the method of derivation of mathematical description of a cam orbit in rotary
rakes (hay aggregators). At first, the authors describe basic construction elements of the rotary hay
rake mechanism and their mutual links and relationships. Thereafter, they define the origin and the
orientation of the system of coordinates, in which all calculations are carried out. In the next step they
define basic requirements concerning the assurance of an optimum functioning of cam mechanisms
as well as their transformation into mathematical equations. These requirements represent a base for
the mathematical formulation of an optimum transition curve and it is emphasized that an optimum
formulation of parameters of this curve is very important. In the course of calculation, they use also
anormalized transition curve, which isused for the optimizations of the total number of parameters of
the transition curve. Thereafter, they take into account mechanical and operational parameters of the
hay aggregators and convert the optimum transition curve to that part of the space curve, which agrees
at best with these parameters. Finally, the whole cam orbit is constructed using individual segments
and presented as a sequentially defined space curve. Its individual parts concur sequentially to the
level of the second derivation and are described as explicit mathematical functions of mechanical
and operational parameters of the hay aggregator. The definition of the system of coordinates, the

execution phase of calculations and the final shape of the cam orbit are illustrated in graphs.

system of coordinates, cam orbit, transition curve, sequentially defined functions, space curve

In the technological line of forage harvesting,
the rake should assure an efficient and considerate
raking of spread-harvested forage. The working
width of one rake segment should be as great as
possible so that the manipulation with the dry
material would be minimized and the shattering of
dry leaves reduced.

Because of their high performance, rotary rakes
are the most frequently used of all hay aggregators
(Smid, 2007).

They have the following structural elements: cam
guide, cam itself, cam arm, carrying attachment, and
working fingers (Fig. 1).

In the course of one working cycle, the carrying
arms rotate together with cam arms around a fix
cam guide and in this way they transfer the motion
to gathering arms fitted with working fingers. These
working fingers transpose the harvested material (i.e.
hay) and push it aside (ca 2/3 of the cam pathway).

In the remaining part of the cam pathway (ca 1/3),
the gathering arms turn due to the action of cam
arms by approximately 90° and the flexible working
fingers leave the harvested material and move back
to a horizontal position. The harvested material is
thrown to a grabbing cloth and forms a swath of hay
(Smid & Bartoti, 2008 b).

The shape of cam guide is very important because
it assures not only a correct working of the rotary
rake butalso its high operational reliability:.

MATERIALS AND METHODS

Importance of cam guides

The cam guide represents a stationary part of
all types and models of rotary rakes. It is mounted
symmetrically around the vertical axis of rotation of
bearing arms and assures their rotation around their
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longitudinal axis and, thus, also lifting and tilting
of working fingers into the swath operation. This
means that the shape of cam guide determines not
only the beginning and the end of swath operation
but also the velocity of lifting and tilting of working
fingers. The angular speed and acceleration of
bearing arms and working fingers (as well as the
torsion forces affecting these bearing arms along
their longitudinal axis) change in dependence on
the shape of the cam guide. This means that the cam
guide influences not only operational parameters of
rotary rakes but also their longevity and resistance
against mechanical damage, above all due to a long-
term load of cams and bearing arms (Smid & Barton,
2010).

Definition of the system of coordinates

Smid & Barton (2009 a) mentioned that, because
of rotation of cam arm and bearing arm around their
vertical axis, the best solution of hay aggregators
design is to use the cylindrical system of coordinates
and to place the axis of rotation at the origin of
coordinates to the height equal to the horizontal
position of the cam arm. The axis of the system
of coordinates can be identified with the axis of
rotation. The cam position, i.e. the shape of the
cam orbit, can be examined from the viewpoint
of the relationship existing between the cam
height z(t) on the one hand and its distance from
the axis of rotation r(t) and the angle of sight ¢(t)
on the other. The calculation into the rectangular
system of coordinates is then performed using the
relationship [x = r(t)cos(d(t), y = r(t)sin(¢(t)),z(t)].
The x-axis will be directed to the point occupied by
the cam at the moment of horizontal position of the
bearing arm, i.e. in time t=0. The angle of sight ¢ will
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1: Basic components and definition of the system of coordinates

cam guide

be then derived (measured) from the direction of the
X-axis.

Shape requirements

The end of the cam arm, which rotates the bearing
arm, moves round the axis of rotation on a circular
orbit with the radius R. The axis of rotation and
the end point of cam arm define the vertical plane,
which rotates around the axis of rotation. However,
in this plane the cam makes only a pendulous
movement that can be characterized by the angle
of cam arm displacement or by the z(t) coordinate
of the cam. The course of this coordinate plays
a decisive role in the determination of the course of
the z(t) coordinate.

When starting from the aforementioned
definition of the origin of the system of coordinates,
it is quite obvious that both extreme positions (i.e.
the upper dead point and the lower dead point)
are identical as far as the absolute value of the
coordinate z is concerned. For this value we can use
the symbol h and the moment when the cam must
leave the lower dead point will be denoted as t1. The
time interval of its transition to the upper dead point
can be denoted as dt. The moment when the cam
must leave the upper dead point will be denoted as
t2. This means that within the time interval t1+dt <=
t <=1t2 the cam is in the upper dead point. Similarly,
the time interval of its transition from the upper to
the lower dead point can be denoted as dt2. In case
that we choose the direction of motion in such a way
that the cam will reach at first the upper dead point,
individual moments may be arranged into the series
0<=1tl <tl +dt <t2<t2+dt2 < T, where T is the
period of one rotation. Evidently, it is necessary that
z(0) = z(T) (Smid & Bartori, 2009 b).

carrying arm

cam
cam arm




Methodology of the cam mechanism design of rotary rakes

139

To prevent the occurrence of immediate impulses
of force affecting the cam it is necessary to assure
that the guiding of cam will have the form of
a smooth curve. Although such a curve can be
defined stepwise, it must be continuous (including
the continuity of its first and the second derivations).
In this case the cam orbit will disintegrate into four,
mutually independent segments. The first of them
is the ascending transition segment, the second
one represents the holding time in the upper dead
point, the third one is the ascending transition
segment and the fourth one represents the holding
time in the lower dead point. The mutual linkage of
these four segments must respect the condition of
continuity (also including the continuity of its first
and the second derivations).

Mathematical derivation of the shape of the
transition segment

From the mathematical point of view it is possible
to define conditions of the course of the z(t)
coordinate of a general transition curve as

pl::z(tl)z—h

p2::z(t1+dt)=h

pa= (%Z(I)L ~0

d
4= —z(t =0
P (dtZ( )]z:zhd/

d2
péz(dtzz(t)J :0.
t=tl+dt

Condition p1 — The coordinate z is at the moment t1
in the lower dead point.
Condition p2 - The coordinate z is at the moment
t1 + dtin the upper dead point.
Condition p3 - The continuity of the 1* derivation.
The cam velocity must not change
non-continuously (i.e. by jumps).
Condition p4 - This condition is the same as that
concerning continuity of the
ascending transition segment and
the holding time in the upper dead
point.
and p6 are similar to those
concerning continuity of the second
derivation (the cam acceleration of
must not change in a discontinuous
manner).
It is a problem to find such a suitable function,
which would meet the aforementioned conditions.

Conditions p5

It seems that a polynomial could be suitable to
solve this problem because of the existence of 6
conditions of at least 5" degree. For this reason let’s
try to use polynomial of the 6™ degree:

— 2 3 4 5 6
zi=t > totto, ot et o et

Basing on conditions of continuity, it is possible to
define the unknown coefficientsc, ... c,.

pli=cy+otl+c, 11>+, 11’ + ¢, 1" + ¢, 11 + ¢, 1° = —h.

p2i=cy+e ((1+dl)+ e, (N +dt) +e (1 +dr) +

e, (1+dt) +eg(+dt) +c(+de) =h
p3i=c, +2¢,t1+ 3¢, 11 +4c, 11’ +5¢,t1* +6¢,11° =0

phi=c + 20, (1 +dt)+3¢, (N +dr) +4c, (1 +di) +

+5¢, (11 +dr) +6¢,(11+dr) =0
pSi=2¢,+6¢,11+12¢, 11 +20¢, 11’ +30¢, 11 =0

p6:=2¢, +6¢, (A +dr)+12¢, (11 +dt) +

+20¢, (11 +dt)’ +30¢, (11 +dr)' =0

When considering conditions pl and p2, it is
obvious that we can simplify the first two equations
by dividing all six aforementioned conditions by h
and introducing new coefficients k; ... k, pursuant
the relationship

Cy

C.
0> *:kw;s:ksa*:kﬁ.

suli= 0= Smf, 2ok S,
ROh TR

The other equations will remain de facto
unchanged. This significant simplification does
not mean that the onset of time measurement
would be shifted to the moment of the beginning
of the transitory segment of cam movement (i.e.
substitution)

su2:=t1=0,

which will result in a really radical reduction of the
solution difficulty. A shift to the original beginning
of time measurement can be done by means of the
substitution t=t - t1.

This means that after performed substitutions the
above conditions will change to the term:

pli=k, =1
p2=ky+kdt+k,dt* +k,dt’ +k,dt* +k;df’ +k,dt® =1

p3:=k1=0
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pA=k +2k,dt +3k,dt’ + 4k, dt’ +5k;dt* + 6k, d’ =0
p5=2k, =0,
p6:=2k, + 6k, dt +12k,dt* + 20k, dt’ + 30k, dt* =0.

As one can see, this simplification is very
important. Coefficients k,, k, and k, can be directly
substituted by 1 or 0. Regarding coefficients k; ... k;
the remaining three equations p2, p4 and p6, can be
solved as follows:

k=0

3(kydt*-10) 3(—4+kodt)
sol =1k, = p = i S ks = @ sk =k -

This means that, after the substitution, the
transition curve will be

~ (kg dt® =20)#° . 3(k,dt* ~10)¢* B 3(—4+ kgt ko

dr’ drt dr’

z:=-

Tt is also obvious that it was not necessary to use
the coefficient k. However, it is possible to find
out if it could not be used for an improvement of
parameters of the transition curve.

Regarding the fact that the transition curve is
valid only for times z of the interval 0 <=t <=dt, it
is possible to carry out a substitution t=q dt (with
the condition 0 <= q <= 1) and develop a normalized
transition curve zs.

zs =1 (ko dt* —20)q* +3(kedt® —10)q" -

“3(-4+kodt®)q* +k, g dt’.

Now it is possible to compare courses of zs(k6,q)
for various values of dt, e.g. dt =0.4 and dt=0.5.

As one can see in Fig. 2, the optimum course of
normalized transition function could be for the
value k, = 0 (outlined as a bold black line). In Fig. 2,
the red and blue curves correspond with values
dt=0.4and dt=0.5, respectively.

Determination of the optimum value of k,
coefficient

It is necessary to find out such value of k,
coefficient, which assures that the value of the
maximum increase of mnormalized transition
function would be as low as possible. The maximum
slope of the transition curve will be in the inflex
point of normalized curve, i.e. in the place where

2
zsqq = Wzs =0

or
z5qq = =6k, dt* = 20)q + 36k, dt* ~10)q* -
—60(—4+kdt®) g’ +30k,q* di® =0.

The above equation enables to find out that q
value, which means that the equation is fulfilled

’ {0 n —40+ 5k, di +[1600+ 5k d” 1 40— 5k, dr +/1600+ 5k di”
solg:=q=|0,1, - .

10 kydt® 710 kydt®

The first and the second value of ¢ result from the
setting of the form of normalised transition function
and meet conditions p5 and p6. For that reason it is
necessary to verify only the third and the fourth
variant.

The value q is inserted into the expression of the
slope of normalized transition function, which is
determined by

zsq :=%zs =- (k6 dr® - ZO)q2 + 12(k6 dr® —lO)q3 -

~15(-4+k,dt*)q" + 6k q’dt°.

SIS
e
ek

2: A normalized transition function for values dt = 0.4 (in red) and dt = 0.5 (in blue) as dependent

onk6andq
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After the introduction of the third variant of
solution (the fourth variant is quite identical)

1 =20+ 5k, dt° + 400 + 5k ’dt">

10 kg dt®

q3=q=

the slope will be changed to the expression

«/400 Skodi”
2 J400+ 5k 2ar? + 136 VA0

3=
=y Zdz” 125 Tk
1152 /400 +5k>2dt™> 4608 12
- 4 7,24 t—mt
5 k'dt klde* s

Regarding the coefficient k,, the maximum slope
of normalized transition function will occur in the
situation when the derivation of the curve slope
(according to k) is equal to zero

«/400+5k dz”
% .3 400 +5 kdt'" + 156

F) kzdt‘z 125 kzdt‘z

Oks| 1152 \[400+ 5k dt”> 4608 12

2
5 kdr* klde* s

and thus

3 (1600 k,2d'?\J400 + 5k2de"® + kSdi* —12800 k. di™

dzs3:=—

25( 260k, *dr** +3072000 — 153600/400 + Sk, dr > j /
/ (k;dzzﬂlztoo +5k7di")=o0.

If the numerator of the fraction on the left side
of the above equation is equal to zero then the last
expression mentioned above is also equal to zero

n=14400k>dt'>\[400 + 5k 2di'™ + 9k dr*® 115200k dr'** -
—2340k,"dr* + 27648000 —1382400,/400 + 5k dr* =0

This equation may be converted to the expression

n:=81kdt™ (k,dt® +10) (k,dt* - 10) (k> dt™ - 420) = 0.

which enables an easy calculation of the coefficientk,

10 10 24105 24105
solk = kg =| 0, ——¢, —, - ——= S22
d*di® di® T dr

The first solution, i.e. k,= 0, can be used only in
the case that there is a limit

1600k dt'> \J400 + 5k 2dr'™> + kSdi™ —12800k de"* —
3 | 260k, dr +3072000 —153600,/400 + 5 &, *dt">

kidr*[400 + 5k 2dr®

im =0,
k025

because, after the insertion of k, = 0, the numerator
on the left side of the equation takes the zero value.
As one can see, the value k,=0 can be used.

Maximum values of the slope of normalized
transition function y can be obtained after the
insertion of calculated values of coefficient k, into
the expression zsqq3. In this case it is necessary
to use for the calculation the limit because the
numerators of fragments take after the insertion
also the zero value. Thereafter, the remaining two
values of coefficient k, can be introduced into the
expression zsqq3 to calculate its value.

1
zsqq3_1:= 75 = 3,750000000

o3 2 _1188 198J§66::i801600000
625 3125

3 3. 188 198J§6B>:3,801600000
625 3125

g3 42262 464356—._43075102040
1225 1225

a3 32202 4632500 _ 4 025102040,
1225 1225

Now it is necessary to determine the value of q
for calculated coefficients k,. For the zero value, it is
again necessary to use limit relations:

1

3 1l=qg=—
Bl=q=7
3

3 2=q==
$3_2=q=7
2

3 3=q=—
93 3=q=7

\/105(3+\/105)
3 4=q= 210

q=0,6463850114

105 -3 + V105

3 5=¢qg=
== 210

q =0,3536149894.

As one can see, the value k, = 0is fully satisfactory:.
In this case the gradient of the transition curve is the
lowest and occurs in the middle of the transition
interval.

This means that the final form of the transition
function is

204 301 127
e dr* dr

z=—1+
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3: A normalized transition function (in black) and its first (blue) and the second (red) derivations

and/or that the normalized transition function is
zs =—-1+20g> —30g* +12¢4°.

Now it is possible to draw the normalized
transition function (including its first (blue) and the
second (red) derivation)

zsq :=60q> —1204° + 604"

zsqq =120g —3604° +2404°.

A general form of transition curve

The general form of transition curve can be
obtained after the substitution t = t + t1 and
multiplication of the whole curve by the value h, i.e.

3 4 s
Z::£_1+20(—t1+t) _30(it+r) | 12(=n1+1) ]h

dr’ dt' dr’

The shape of the descending transition curve

The descending gradient of transition curve can
be derived in a practically identical manner; it is
only necessary to exchange values +1 and -1 in the
first and the second conditions. The corresponding
transition curve is expressed as

and, after the substitution t = t + t2, dt = dt2, will take
a general form

3 4 5
79— 1_20(—t2+t) +30(—t2+t) _12(—t2+z)
dt23 d[24 d[25

Cam orbit coordinates

The course of the cam orbit coordinate can be
derived on the base of transition functions Z and
Z2; this course is expressed as a sequentially defined
function

-1 t<tl
20 (=e1+1)  30(—r1+1)" 12(-r1+1)
B TETED YRS N TC7ES7 R
dt dt dt
1 t<t2
Vzi=h R . s
20(-2+1) 30(-12+1)" 12(-12+¢
_Bo(2e) 0(24) 1224y
dt2 dt2 dt2’
-1 t<T
-1 otherwise

The joint of cam arm (Fig. 1) rotates on a horizontal
orbit with the radius R, at the height z = 0. Joint
coordinates can be expressed as

KRV =|R COS[EJ,R sin (ﬂ), 01,
T T

where o is the angular velocity of rotation,

2
w=—,
T

where T = period of rotation. If the length of the cam
arm is written as r, then this length must be constant,
regardless to the cam position. The maximum angle
that can be formed between the cam arm and the
horizontal plane can be defined as a.. This means that
the cam arm will tilt from the horizontal position by
+ a.. Then it must be valid that

h:=rsin (a).

The distance between the cam and the rotation
axis will change in dependence on the angle of cam
tilt. If this distance will be denoted as p then it is
valid that

¥ =(R—p)2+vzz,
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where vz is the coordinate z of the cam orbit; quite
naturally, vz=Vz (the substitution for Vz would be
too long). The last equation enables to calculate the
distance of the cam p from the rotation axis.
Within the selected system of coordinates, the
cam coordinates (i.e. of its orbit) will be
2z tJ :|
’ vz ’
T

o= (R oo 22 (- sin

where

-1 t<1l

20 +1) 30(-a1+1)" L2(a +1)

t>tl+dt
dr’ dr* dr
. 1 t<12
vz =rSsin (a) 3 4 5
20(—12+1t)  30(—12+1) 12(-12+1)
- + - t<t2+dt2
dr2’ dr2* dr2’
-1 t<T
-1 otherwise

Finally, it is possible to draw the cam orbit,
trajectory of the cam arm joint, and 200 positions of
the cam arm during one revolution, e.g. for values

su::l:T:l, =0, dt=02 2=0,55, d2=0,4, R=03. r=0,15, a:ﬂ.

RESULTS AND DISCUSSION

The method described above is a direct analytical
calculation of the shape of cam orbit in dependence
on required design values and requirements. It
results in the final shape of the cam orbit, which
is described by means of common mathematical
functions. The coordinates of cam orbit can be
defined without the need to apply special design

ol

z[m]

#[m]

programmes. Although the calculation can be
carried out in a conventional manner (i.e. on
paper), the application of any simple computer
can the whole process significantly shortens and
accelerates. According to Smid & Bartofi (2008 a),
the simplest method of processing seems to be the
application of any spreadsheet processor (e.g. Excel
or Calcul), which are markedly cheaper than various
specialized programmes, (e.g. Automa 2011, Solid
Works 2011 or Sims 2011). Moreover, the work with
these simple spreadsheet programmes is also much
easier.

Regarding the fact that the final shape of cam
orbit is not given numerically (in contradistinction
to common outputs of programmes generating
the cam mechanisms, viz. AV Engineering 2011,
Generators  (Generdtory) 2011, and/or Kfivky
(Curves) 2011) but as a function of basic design
dimensions of the mechanism), it is possible to carry
out also subsequent analyses and mathematical
modeling of the behavior of other constructional
elements or operational forces, of corresponding
moments of forces and/or outputs required for the
motion of whole subsequent structural units. This
is not possible when using cam orbits defined in the
form of numeric series. Besides, it also could be too
complicated.

CONCLUSIONS

The analytical shape of the cam orbit represents
a base for mathematic modeling of kinematics
and dynamic properties of a whole category of
agricultural machines - i.e. of rotary rakes. All these
mechanisms are based on the same principle and
for that reason it is possible to describe them by
means of an identical mathematical model. For any

4: Cam orbit (in black), trajectory of the cam join (in blue), and 200 positions of the cam arm (in red)
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concrete mechanism, it is only necessary to insert
numeric values expressing concrete structural
dimensions. This means that the calculation itself
is not specially formulated for a concrete cam orbit
but that it can be applied to any cam orbit of any
arbitrary model of hay aggregators manufactured
by various companies. The analytical form of this
mathematical model can be then applied for the

optimization of the whole machine, both from the
viewpoint of design optimization and operational
reliability. The aforesaid model of cam orbit
enables a significant simplification, acceleration,
cost-reduction and above all quality improvement
of developing and designing of corresponding
mechanisms.

SUMMARY

In the majority of hay aggregators/rakes, the cam mechanism is an important structural element
because it determines the beginning and the end of swath. The shape of cam orbit is therefore
dependent on structural and operational parameters of these mechanisms. In dependence on these
parametersitis possibleto derive an analytical shape of the spatial curve of cam orbit. The mathematical
description of cam orbit is based on an optimized transition function. The authors derived it in detail
and described also its application when calculating the cam orbit. The final mathematical description
of the cam orbitis an explicit mathematical function of basic structural parameters of this mechanism
and can be used as a core element of the subsequent optimization of the whole rotary rake.
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