
257

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS

Volume LIX 30 Number 4, 2011

AUGMENTED REALITY IMPLEMENTATION
METHODS IN MAINSTREAM APPLICATIONS

D. Procházka, T. Koubek

Received: August 31, 2010

Abstract

PROCHÁZKA, D., KOUBEK, T.: Augmented reality implementation methods in mainstream applications. Acta
univ. agric. et silvic. Mendel. Brun., 2011, LIX, No. 4, pp. 257–266

Augmented reality has became an useful tool in many areas from space exploration to military
applications. Although used theoretical principles are well known for almost a decade, the augmented
reality is almost exclusively used in high budget solutions with a special hardware. However, in last
few years we could see rising popularity of many projects focused on deployment of the augmented
reality on diff erent mobile devices. Our article is aimed on developers who consider development
of an augmented reality application for the mainstream market. Such developers will be forced to
keep the application price, therefore also the development price, at reasonable level. Usage of existing
image processing so� ware library could bring a significant cut-down of the development costs. In the
theoretical part of the article is presented an overview of the augmented reality application structure.
Further, an approach for selection appropriate library as well as the review of the existing so� ware
libraries focused in this area is described. The last part of the article out lines our implementation of
key parts of the augmented reality application using the OpenCV library.

augmented reality, OpenCV, template matching, ARToolkit, computer vision, image processing.

1 Introduction
The general principle of the augmented reality

(AR) is embedding digital information into the real
world scene. Thus it is a step between virtual reality
and the real world. The embedded information is
usually based on the content of the scene. A selected
real object could be augmented by a virtual object
or completely replaced. Well-known examples
are the presentation of the fighter status report on
the head-up display before a pilot or a navigation
information projected on the wind shield of a car.

Applications based on the augmented reality have
been used for decision making process support for
many years. Military solutions for field operations
made the pioneering work in this area – from
mentioned fighter head-up displays to tactical
suits for troopers. Moreover there is a number of
applications for construction and maintenance of
complex systems. Especially space devices, planes
and helicopters. A number of these solutions
is outlined in Ong, Nee (2004). The discussed
applications are usually developed for a single

specific purpose. Especially from this reason, they
are rather expensive. Therefore, they are used
just for saving lives or speed-up production or
maintenance of very expensive devices.

However, in last few years AR applications have
been emerging into other areas – design, medicine
and even consumer electronics. Development of
AR applications for this field is discussed in this
article. It is obvious that one of the most important
prerequisites for the success in this area is the price.
This price is given by the price of the hardware
(which is nowadays usually quite cheap) and the
development costs.

The development costs could be significantly
cut-off using different image processing so� ware
libraries. AR applications are working on similar
well-know prin ciples. For a number of complex
algorithms is therefore possible to use an existing
implementation (image preprocessing, edge detec-
tion, etc.). The goal of this article is to present
these libraries potential for development of such
mainstream AR applications and clearly outline

258 D. Procházka, T. Koubek

the general AR application structure including the
implementation in a selected library.

The section 2 shortly describes the augmented
reality hardware and examples of its usage. In the
section 3 is outlined the key problem – detection
of an object in an image. The section 4 is a short
review of the existing so� ware libraries for
image processing. In section 5 is presented our
implementation of key parts of an augmented reality
application.

2 Hardware used for augmented reality
solutions

Our reality could be augmented in many ways.
Widely spread are for example audio navigation
tools for visually impaired people. However, in
the following review we will focus especially on
a visual augmentation of the reality. This visual
augmentation could be divided into three main
categories. The first one is based on usage of the
head mounted displays. The other group is based on
projectors. This kind of augmented reality is called
spatial augmented reality. The last category is based
on common displays (tablets, cell phones, etc.).

Currently used head mounted displays are based
on the optical composition of the scene or on
the video composition. The optical composition
is a projection of artificial objects on a semi-
transparent screen before user eyes. The video
composition combines an image from a camera
with artificial objects and the result presents on
a small LCD screen in a virtual helmet. These semi-
transparent screens are suitable especially for
applications when a camera signal blackout could
be critical (fighters, troopers, etc.). On the same
principle there are in fact based head-up displays
in cars with status and navigation information. The
most important problem of this solution is the exact
overlaying of a real and digital object.

The solution is in the usage of the video
composition based device. The image from the
front-side camera is analysed, position of the real
object is found and this object could be seamlessly
replaced. Drawbacks of this solution are usually
higher head mounted display size and weight,
limited field-of-view and the price.

Applications based on them are usually from the
category discussed in the beginning of the article
– special high budget solutions. However, these
solutions are not suitable for a common customer.

The other group of products – a solution based
on projectors – is significantly growing in last years.
A computer is analysing the scene using a camera
and search ing for predefined objects. If the found,
the attached projector is able to augment directly
the real world object surface by the given digital
information. A quite common example of this

spatial augmented reality is the adaptive projector
used for projection on heterogeneous surfaces. The
projected image is controlled by the so� ware and
adjusted to compensate the differences between
the anticipated and the real image. A thorough
description of this technology could be found in
Bimber, Raskar (2005).

The last group of devices are solutions based on
different screens. This area has been growing in
the fastest way in last years. It is given especially by
a huge emerge of advanced cellphones and tablets.
These devices have all necessary components:
a suitable display, a high resolution camera,
a processor fast enough to make the real-time image
analysis and also a GPS accompanied by compass.
One of the most popular AR application of this kind
is project Layar1. From the technical pointof-view, it
is a video composition based application merging
the camera image with additional information from
map layers stored inside the device.

The cellphones and other portable devices present
a platform with a significant economical potential.
The number of users is in comparison to previously
mentioned categories incomparable. According
to the research done by the Garther agency, 62
million smartphones with ability to run such AR
applications was sold only in second quarter of the
year 2010. The rapidly growing market of tablets
founded by the Apple’s iPad2

is also important.

2.1 Comparion of AR implementations
Although the presented output devices are

completely different, there is a number of common
principles. The first key problem is the identification
of the screen before the user. For this purpose
could be used solely image processing (searching
for known objects) or there could be used other
position techniques. There is frequently used the
triangulation from a cellphone network, Wi-Fi
hotspots, the GPS or some inertial sensors. At the
moment the scene before the user is identified, it
is necessary just to insert appropriate information.
These first two steps are based on well-known
common principles described later.

A significant difference is in the method of
presentation to the user. However it is just a question
of the used hardware. So� ware architecture of the
systems is usually very similar.

3 Object detection methods
The general structure of any application based on

image processing is following: We will acquire an
image from a camera and store it into an inner rep-
resentation (a kind of RGB color matrix). Further
we will make an image analysis and identify a pos-
sible wanted object, its position and orientation.
This potentially wanted object is compared with

1 http://www.layar.com/
2 http://www.apple.com/ipad/

 Augmented reality implementation methods in mainstream applications 259

a predefined pattern or patterns. In the case of suc-
cess, the last step is insertion of the artificial object.
This process is illustrated on the fig. 1. This process
is quite common for all AR applications.

Another signifi cant diff erence is especially in the
step of comparison of the possible desired object
with the patterns. It depends whether searched
object is a face, a natural object (building), a simple
shape (window) or an artificial marker (usually
black and white square with a predefined pattern).
In the following part of the article we will focus on
the artificial marker. This case is quite simple and
could be the first step in building of a robust AR
application.

3.1 Artificial marker detection
An example of the marker detection process could

be described by following steps. The whole process
is also outlined on Fig. 2. Our presented method is
not the only possible solution, however it is widely
used by many well tested applications.

As been already mentioned, from an input device
a color image is taken and stored into the inner
representation of the image processing library.
Further, this image is transformed into the gray
scale. It is possible to make a standard conversion
of all color channels or prefer a specified color
channel (e.g. green). The grey value now presents
the brightness of the pixel (hence an object).

Such image contains a number of objects –
markers, persons, furniture, etc. For performance
improvement it is necessary to remove most of these
objects from the image. This step is usually done
via thresholding. Simple thresholding could be
generally described using following formula:

  0, f(i, j) ≤ P
g(i, j)=  (1)
  1, f(i, j) > P ,

where function f(i, j) is the source image (brightness
of the pixel), value P is the threshold and g(i, j) is
the result image. Value of the threshold is usually
determined according to the scene content.

The gist of the thresholding is transformation
to a bitmap in such way that allows to remove
most of unnecessary objects. A well chosen
thresholding method could signifi cantly improve
the performance of the application. Each object that
is not filtered out is a potential marker and therefore

must be tested as described further. If its possible,
it is recommended to prepare also an appropriate
testing environment. Suitable lighting and high
contrast markers could significantly simplify the
preprocessing phase. Generally, a homogeneous
controlled environment allows to wipe out most
of the unwanted objects (se e.g. Dutta, Chaudhuri
(2009)). In case of complex lighting conditions,
different adaptive thresholding techniques are
usually used.

The result of the previous step is an image with
number of vertices and edges. The other step
is detection of connected components with the
required shape. This could be done using an image
morphology algorithm. This algorithm produces
a list or tree of image components. For identification
of potential markers it is sufficient to browse this
list of objects and test whether the provided entity
fulfils the given criterion. In case of a common
white square marker with a black inner square with
a pattern, it is an entity with four vertices with an
inner entity again with four vertices.

As soon as we have potential marker vertices,
they must be compared with predefined patterns.
For this comparison there must be done marker
pixels transformation between a marker plane
and a camera plane (in other words: perspective
distortion must be eliminated). Equation 2 describes
this transformation. If defined transfor mation
matrix is applied on point [xm, ym, zm] in marker
plane, we will receive the position of this vertex in
the camera plane. By inversion of this process we
could receive the original vertex position before
perspective distortion (generally we will receive the
original object shape). Elements T1–T3 represent
a translation vector. Elements R11–R33 represent well
known 3 × 3 rotation matrix (see Neider et al. (2007),
p. 806). Calculation of the transformation matrix
elements is described in Šťastný et al. (2011). By
this step we have restored the original shape of the
object and it is possible to make comparison with
the marker patterns.

 xc    R11 R12 R13 T1   xm 
       
yc   R21 R22 R23 T2   ym 
        (2)
 zc    R31 R32 R33 T3   zm 
      
 1    0 0 0 1   1 

1: Scheme outlining the basic functionality of the augmented reality application

260 D. Procházka, T. Koubek

A precondition of a successful transformation is
a camera calibration step. The camera calibration
matrix describes optical properties of a given
device and compen sates also possible optical errors.
This calibration matrix is calculated for a given
camera only once. Therefore, the performance of
the application is not affected. The application of
calibration matrix is described in 3. Its structure and
calculation is outlined in Kato, Billinghurst (1999).

The last step – marker identification – is the
most time consuming operation. It is a correlation
calculation between the potential marker image
and the pattern. In case matching is above the given
limit, images are taken as corresponding. For the
correlation calculation could be used a number of
methods. From neural networks to least squares
algorithm. Selected approaches are described in
Kato et al. (2003). Methods implemented directly in
OpenCV library could be found in Bradski, Kaehler

(2008) on page 214. Each potential marker must be
tested against all patterns using a selected method
until all patterns are tested or the appropriate pattern
is found. It is obvious that computation complexity
grows linearly with the number of patterns. That is
the reason why in many applications there are used
special markers with patterns given by algorithms
such as the well known Golay error code.

In case there is a corresponding pattern, the
application will store the transformation matrix that
defi nes the orientation of the marker in the scene.
This matrix is the homomorphy matrix described
before.

3.2 Conclusion of marker identification
process

Basic principles of the AR applications are quite
similar, as is obvious from the de scription outlined

 xc    C11 C12 C13 C14   R11 R12 R13 T1   xm 
         
yc   C21 C22 C23 C24   R21 R22 R23 T2   ym 
          (3)
 zc    C31 C32 C33 1   R31 R32 R33 T3   zm 
        
 1    0 0 0 1   0 0 0 1   1 

2: Stages of object detection and augmenting of the scene

 Augmented reality implementation methods in mainstream applications 261

above. The difference is mostly in particular
algorithms for image comparison. That is the reason
why it is not effective to implement the application
from the scratch, but to use an existing library that
supports the mentioned well-known algorithms.
The following part of the article describes an
appropriate library selection.

4 Methodics of image processing library
selection

Before library selection for our AR application it is
necessary to specify exactly the functionality which
is required. For a huge number of applications,
following criteria are important:
1. Required programming language support:

Fulfilment of this criterion could be complicated.
Most of the libraries support just C/C++. An
exception is the OpenCV library that supports
also the Python language and NyARToolKit
supporting many mainstream languages.

2. Required platform and architecture support:
This problem is obviously the most limiting
criterion. Especially in case application is targeted
on mobile devices. On personal computers there
is limited only support of 64 bit archi tecture that
is necessary for complex applications.

3. Project is under active development: There is
a huge number of already un supported projects
or projects with very limited numbers of active
developers and users. Usage of such library is not
recommended. Support of new archi tectures,
input devices, etc. is an essential feature of any
library.

4. Documentation: This aspect is in the beginning
of the projects frequently un derestimated.
However, developers will be facing a number
of situations where is utmost important to
understand thoroughly the implemented
method. It is not enough to know that this
method or function if proving some correlation
coefficient, it is necessary to know exactly how
the algorithm works.

5. Provided functions number: Again, it is quite
an obvious requirement. It is recommended to
consider the application future development.
To base the project on a library with limited
functionality could be in long term point-ofview
expensive.

Further section briefly reviews selected frequently
used image processing toolkits.

4.1 OpenCV
OpenCV3 (Open Computer Vision) is an open source

toolkit for the real-time image processing. OpenCV
is the most robust solution among all frameworks

in comparison. It supports C++, C and Python
languages. It consists of tools for image analysis,
image transformations, camera calibration, stereo
vision and also tools for simple graphical user
interface and more.

OpenCV is associated with Intel company, which
implements the support for OpenCV into hardware.
This library uses Intel Integrated Performance Primitives
that provides high performance for low-level
routines for sound, video, speech recognition,
coding, decoding, cryptography etc. Intel Threading
Building Blocks is used for parallel processing.

The library is a cross-platform, there are versions
for GNU/Linux, Microso� Windows and Mac OS X,
32b and 64b systems. A big advantage of this project
is that it is still in development. In December 2010
there was released version 2.2. The development
of a new version is in progress. The community of
OpenCV users is huge, there are a lot of manuals,
tutorials and discussion forums. Basics of OpenCV,
mathematical principles of image processing and
their implementation are described by Bradski,
Kaehler (2008).

Easy usage of cameras is very useful for
augmented reality applications devel opment. This
framework uses resources of operating systems
and communication with hardware drivers is fully
provided as well. If a camera driver is installed in
an operating system, it can be initialized and used
immediately. Disadvantage of this library is that
there are not implemented any direct methods
for marker registration. As shown below, for this
purpose it is necessary to link several different
OpenCV functions.

4.2 ARToolKit
ARToolKit4 is a so� ware library for development

of augmented reality applications. It is a cross-
platform. There are versions for GNU/Linux,
Microso� Windows, Mac OS X and SGI, but officially
only for 32b versions of the systems. This framework
implements some basic tools for marker registration.
This is more straightforward in comparison with the
OpenCV. Implemented methods are robust. The
library supports C language. The community of
ARToolKit users is not as big as OpenCV community,
but still quite large.

Working with cameras is more complicated than
in the case of OpenCV. However, a more substantial
problem is that development of a free version of
this framework was stopped and it continues only
for the paid version called ARToolKit Profes sional5.
The last free version was released in February 2007
and since then no further update has been released.
The development is stopped and probably no new
version will be released in the future. Compatibility

3 More information on: http://opencv.willowgarage.com
4 http://www.hitl.washington.edu/artoolkit
5 http://www.artoolworks.com

262 D. Procházka, T. Koubek

with new versions of the operating systems or
other features is not guaranteed. These can be
found in the paid version, which is very costly. The
development license costs 4995$ a year, use of the
framework in third party applications costs 995$
a year. The development of a commercial version is
currently uncertain, because the last major changes
of ARToolKit Professional were made, according
to the documentation, in 2007. The library is still
maintained.

4.3 NyARToolKit and derivates
NyARToolKit6 was derived from ARToolKit version

release 2.72.1 (the last version of free ARToolKit).
Nowadays is NyARToolKit developed by Japanese
author. In fact, it is derivated from ARToolKit for
other platforms and languages (ARToolKit is for C
language only). There is a version for Java, Flash,
Android, Silverlight (SLARToolKit), Actionscript
(FLARToolKit), or C#. C++ version is in beta stage
(no support for 3D or cameras). There are still some
restrictions, i.e. documentation is in Japanese but
project is active and other shortages can be removed
in next versions. The community will be crucial.

4.4 Other AR libraries
Other frameworks for working with the AR

are Morgan, DART, Goblin XNA or Studierstube.
Mostly these are university projects, but they are
not so recent or their support is only marginal,
as well as their user community is only limited.
Studierstube is worth of noticing, because of the best
documentation (among uni versity projects). It is
developed by Institute for Computer Graphics and
Vision at Graz University of Technology. At first
Studierstube has been used for collaborative AR, later
was focused on mobile applications. This library
uses other frameworks for tracking, video and
registration.

It is advisable to check the development of Goblin
XNA. It is a Columbian University project, derived
from the project Goblin with added support for
Microso� XNA framework. ARTag is used for marker
tracking. Connection with XNA helps to bring
augmented reality applications on the Microso�
Xbox platform. However, it is also available for
GNU/Linux and MacOS X.

4.5 Choice of appropriate library
OpenCV, ARToolKit (Profesional), NyARToolKit

and Studierstube have some pros and cons, but they
belong to better ones. But none of these fulfilled
completely specified criteria for the framework
choice. All frameworks are cross-platform. Support
for 64b is provided for OpenCV, NyARToolKit and
ARToolKit Professional. OpenCV, ARToolKit (Professinal)
and Studierstube have a lot of documentation (OpenCV
has both official documentation and literature).

OpenCV has the best stability of development
among all frameworks. New versions are released
o� en and a lot of mistakes are corrected and a new
features are added. For other projects, continuation
of the development is uncertain. NyARToolKit
publishes updates approximately in six-month
intervals, the last in April 2011. Studierstube released
the latest version of the framework two years ago.

The choice of a library is not clear at all, because
it depends on particular needs of the project.
However, for production deployment NyARToolkit,
ARToolKit and Studierstube are not appropriate.
The big disadvantage is the uncertain or stopped
development. These libraries have big potential,
but there should be some issues in future, especially
new architecture or operating system compatibility
etc. The development of the ARToolKit Professional is
also questionable. The project website was updated
at 2011, but only version 2.72.1 (from 2007) is
avalaible for free.

The choice of an appropriate library is a very
import decision at this point. From our point-
of-view, there are two options – ARToolKit
Professional and OpenCV. The first one is ready
for development augmented reality applications,
but it is very expensive. OpenCV has a good
documentation, user support and it is free, but not
ready for AR applications development. The user
has to implement a method for marker tracking
or recognition. However, the OpenCV providea
a lot of image processing functions which can be
useful later. We decided to use the OpenCV for
development of our AR application.

5 Detection of artificial marker in OpenCV
environment

As we described earlier, the OpenCV library
does not implement any direct meth ods for
identifying and registering artificial markers in
space. But it provides a lot of methods for image
analysing and image processing, which can be
used for implementation of marker recognition
and registration. For testing of the AR ap plications
OpenCV offers functionality for finding of the
special type of marker – chessboard. The use of
chessboard marker makes development of simple
AR applications much easier. Next section describes
main ideas for finding of a artificial marker. The
method details can be found in Bradski-Kaehler
(2008), in OpenCV reference manual on the project
homepage and in code examples distributed within
the installation package.

5.1 Finding of artificial marker vertices
As mentioned in section 3, firstly the image has

to be converted to gray-scale and thresholded.
Gray-scaling is done by function cvCvtColor
which converts OpenCV internal format to different

6 http://nyatla.jp/nyartoolkit

 Augmented reality implementation methods in mainstream applications 263

color spaces. This conversion is possible to color
spaces RGB, CIE Luv, CIE Lab, HLS, HSV, YCrCb
and CIE XYZ. One parameter of cvCvtColor
specifies between which two color spaces the
image is converted. To threshold image function
cvAdaptiveThreshold can be used. Its output is
a binary image. The threshold value, threshold
methods and their settings are specified in the
function parameters.

Next step of our analysis is finding of edges and
vertices. OpenCV provides several functions which
implement different algorithms for these actions.
For edge detection is available i. e. Canny edge
detector or Hough transformation. Mentioned
methods are described at Wang, Fan (2009),
respectively Duda, Hart (1972). Another option is
OpenCV function cvFindCountour. The process
described below works with well-known artificial
marker – a black rectangle within a white field, with
a unique picture (can be compared with template).

Our application uses the cvFindContour
function to find contours in the thresholded image.
There are two kinds of contours – an inner and
outer contour. All contours are represented by an
OpenCV structure called cvSeq and is stored into the
special storage. Some parameters of cvFindContour
are important for the whole algorithm. Parameter
mode, in function cvFindContour, means, how
the found contours will be organized. If mode is set
to CV_RETR_CCOMP, all contours are organized
into two level hierarchy – parents and children (it is
possible to obtain also a list or tree of contours).

All contours are stored in the internal storage,
and we must decide, which contours belong to
a particular marker. At first, we can approximate
polygon from contours by function ApproxPoly.
It is an important step in finding a marker, bacause
polygons have some additional attributes, i. e.
attribute total, that expresses amount of lines of
a polygon.

Choice of right contours is crucial. We can use
attributes of cvSeq and attributes of polygons. We
declare, that a contour is a marker, if it consists of 4
lines (being the attribute of polygon – determining
outer contours of the black rectangle), if has a child
(being the attribute of cvSeq – determining inner
contours of black rectangle) and the child consists
of 4 lines. These conditions determine the edges of
the marker. Each contour is the input for structure
CvSeqReader. This is used for finding vertices of
markers. For this purpose there is called macro
CV_READ_SEQ_ELEM. This algorithm output
is a marker vertices quaternion. It is used for
transformation of the coordinate system (see 2,
step 6). Now we have a quadruple of points that
describe the vertices of a potential marker.

5.2 Transformation of vertices coordinates
into camera plane and image matching

For matching of the found object with an
image template it is necessary to compensate its
perspective transformation. For computing of the

transformation matrix, which describes this marker
pose and position, function cvFindHomography
can be used. Its input is the matrix of points which
represents the marker template and matrix of points
which represents the marker in the image (this is
just a square of given size). Their transformation
is described by the matrix in equation 2. It is also
used for compensation of marker rotation. For this
cvWarpPerspective is used. This function makes
inverse operation for transformation which is
described by the matrix (for inverse transformation
is necessary to use flag CV_WARP_INVERSE MAP).
The output of this function is an image without
perspective transformation. This image can be
matched with the template.

For comparison of two images OpenCV provides
own implementation of a template matching
method, described by Brunelli (2009). It is
implemented in function matchTemplate. The
template slides through the image, compares the
overlapped patches against the template using
a specified method and stores the comparison
results to a matrix (result value expresses probability
of the template presence in the image and depends
on the matching method). For finding the template
position in the image function minMaxLoc must be
called. This function finds the position and value of
global minimum and maximum in the result matrix.

Surely the match matchTemplate method is not
the only solution for pattern recognition. There
could be used a number of methods including
different cluster ing methods (see e. g. Fejfar et
al. (2010)) or neural networks (image processing
applications outlined e. g. in Prochazka et al. (2011)).

5.3 Finding chessboard marker
In this section there is implemented detection

of chessboard vertices. This is a spe cial case of the
issue described in section 5.1. For this chessboard
vertices detection OpenCV includes function
cvFindChessboardCorners which finds all
inner corners of the chessboard. The input of this
algorithm is the chessboard size – amount of the
inner corners (height and width of the chessboard).
There are few methods for finding the corners.
Function cvFindCornerSubPix can be used
for a more precise determination of the corner
position. A� er this, the position of all inner corners
of the chessboard is stored into an array of cvPoint.
Vertices, which represent the four edge vertices
of the marker are on these array coordinates: 0,
boardWidth-1, (boardHeight-1)*boardWidth and
(boardHeight-1)*boardWidth+boardWidth-1,
number boardWidth represents the amount of
inner chessboard corners in rows and boardHeight
represents the amount of corners in columns. This
algorithm output is a marker vertices quaternion.
These are the corners coordinates of the chessboard
marker in the image. These corners are highlighted
in fi g. 3 by big circles. Other found corners are
highlighted by smaller circles. There is an apparent
robustness for rotation and bending of the

264 D. Procházka, T. Koubek

chessboard. A loss of inner corners occurs at big
deformation of the marker.

DISCUSSION AND CONCLUSIONS
The implementation clearly shows that the

OpenCV library is able to implement same
functionality as the well-known ARToolkit and other
libraries based on this project. This is a key issue for
many developers considering the AR application
development. According to our experience, the
OpenCV is more feasible solution than the ARToolkit,
despite more complicated beginnings.

The augmented reality applications for common
users are emerging area. Low user-friendliness is
a crucial problem of the development, although
there is a significant research in this area for almost
two decades. For instance, there are no standard
approaches for user interface design, even despite
the fact these are commonly used for a desktop
and mobile applications design – see Saffer (2010),
Kryštof (2009) and many others. One of the reasons
is that many metrics and design patterns are not
applicable to AR applications development.
Assimilation of new metrics and patterns is
a significant challenge. In future work we want to
focus on this area.

3: Example of chessboard marker detection

SUMMARY
As been outlined in our article, all augmented reality applications work on similar theoretical
principles. The crucial difference is in a position/orientation detection and in a template matching
approach.
Only satellite navigation systems, compasses and motion sensors are used in a part of applications.
However, these applications usually do not allow representa tion of complex graphics objects. The
other group of applications use the image analysis to specify the information about orientation of
the user. The base of these applications lies in composition of a signal from a camera and a digital
information. In our article we deal with this area. We chose the problem of an identification of an
artificial marker for illustration.
The functionality of the application based on the image analysis was defined in the section 3.1 as
the ability of: image reading from an input device, its preprocess ing (gray scale transformation,
thresholding), segmentation on continuous objects, vertex detection, compensation of geometric
distortions and the comparison with given patterns. The list of these processes could be supplemented
by an ability to insert the model/information to the image. Its implementation depends on the ar-
chitecture of the application (if OpenGL, Microso� DirectX or other API is used). The aim of this
section is to explain comprehensibly basic principles of the image processing in AR applications.
The basic implementation scheme, which is briefly described in section 5, presents clearly the
implementation of discussed problems using the OpenCV library. The usage of presented solutions
can reduce development time. Discussed projects (and especially the OpenCV project) are open-
source. Therefore, it is possible to modify or extend the unsatisfactory existing implementations
of the methods. On the basis of our experience with discussed libraries, we recommend to use the
OpenCV library. The significance of the project, open source codes, high-quality implementation,
available documentation and also the wide community and support of Intel company are indicators
of project quality and to some measure guarantee of further development.

Acknowledgements

This paper is written as a part of a solution of project IGA FBE MENDELU 31/2011 and research plan
FBE MENDELU: MSM 6215648904.

 Augmented reality implementation methods in mainstream applications 265

REFERENCES
BIMBER, O., RASKAR, R., 2005: Spatial Augmented

Reality: Meeting Real and Virtual Worlds. Wellesley,
Massachusetts, USA: A K Peters. ISBN 1-56881-
230-2.

BRADSKI, G., KAEHLER, A., 2008: Learning OpenCV:
Computer Vision with the OpenCV Library. USA:
O’Reilly Media. ISBN 0-596-51613-4.

BRUNELLI, R., 2009: Template Matching Techniques
in Computer Vision: Theory and Practice. USA: Wiley.
ISBN 978-0-470-51706-2.

DUDA, R. O., HART, P. E., 1972: Use of the Hough
transformation to detect lines and curves in
pictures. Commun. ACM. 15, 1, pp. 11–15. ISSN
0001-0782.

DUTTA, S., CHAUDHURI, B. B., 2009: Homogenous
Region based Color Image Segmentation. In:
Proceedings of the World Congress on Engineering
and Computer Science, San Francisco, CA, Vol. II.,
pp. 1301–1305. ISBN 978-988-182102-7.

FEJFAR, J., WEINLICHOVÁ, J., ŠŤASTNÝ, J., 2010:
Musical Form Retrieval. In MENDEL 2010, 16th
International Conference on So� Computing. Brno
University of Technology.

KATO, H., BILLINGHURST, M., 1999: Marker
Tracking and HMD Calibration for a Video-based
Augmented Reality Conferencing System. In:
Proceedings of International Workshop on Augmented
Reality, pp. 85–94, San Francisco, CA. IEEE. ISBN
0-7695-0359-4.

KATO, H. et al., 2003: A Registration Method
based on Texture Tracking us ing ARToolKit. In:
Proceedings of IEEE International Augmented Reality
Toolkit Workshop, pp. 77–85. ISBN 0-7803-7680-3.

KRYŠTOF, J., 2009: Towards an MDA-based
approach for development of a struc tural scope
of the presentation layer. Acta univ. agric. et silvic.
Mendel. Brun., LVII, 6, pp. 123–133. ISSN 1211-
8516.

NEIDER, J., DAVIS, T., WOO, M., 2007: The OpenGL
Programming Guide: The Official Guide to Learning
OpenGL Version 3.0 and 3.1. USA: Addison-Wesley
Publishing Company. ISBN 0-3214-8100-3.

ONG, S., NEE, A., 2004: Virtual and Augmented Reality
Applications in Manufacturing. London: Springer.
ISBN 978-1-85233-796-4.

PROCHÁZKA, D. et al., 2011: Mobile Augmented
Reality Applications. In: MENDEL 2011, 17th
International Conference on So� Computing. Brno
University of Technology. ISSN 1803-3814.

SAFFER, D., 2010: Designing for Interaction: Creating
Innovative Applications and Devices. Berkeley, CA:
New Riders. ISBN 0-321-64339-9.

WANG, B., FAN, S., 2009: An Improved CANNY
Edge Detection Algorithm. In: IWCSE ’09:
Proceedings of the 2009 Second International Workshop
on Computer Science and Engineering, pp. 497–500,
Washington, DC, USA. IEEE Computer Society.
ISBN 978-0-7695-3881-5.

ŠŤASTNÝ, J. et al., 2011: Augmented reality usage
for prototyping speed up. Acta univ. agric. et silvic.
Mendel. Brun., LIX, 2, pp. 353–360. ISSN 1211-8516.

Address

Ing. David Procházka, Ph.D., Ing. Tomáš Koubek, Ústav informatiky, Mendelova univerzita v Brně,
Zemědělská 1, 613 00 Brno, Česká republika, e-mail: david.prochazka@mendelu.cz

266

