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Credit scoring, it is a term for a wide spectrum of predictive models and their underlying techniques 
that aid fi nancial institutions in granting credits. These methods decide who will get credit, how much 
credit they should get, and what further strategies will enhance the profi tability of the borrowers to 
the lenders. Many statistical tools are avaiable for measuring quality, within the meaning of the pre-
dictive power, of credit scoring models. Because it is impossible to use a scoring model eff ectively 
without knowing how good it is, quality indexes like Gini, Kolmogorov-Smirnov statisic and Informa-
tion value are used to assess quality of given credit scoring model. 
The paper deals primarily with the Information value, sometimes called divergency. Commonly it is 
computed by discretisation of data into bins using deciles. One constraint is required to be met in this 
case. Number of cases have to be nonzero for all bins. If this constraint is not fulfi lled there are some 
practical procedures for preserving fi nite results. As an alternative method to the empirical estimates 
one can use the kernel smoothing theory, which allows to estimate unknown densities and conse-
quently, using some numerical method for integration, to estimate value of the Information value. 
The main contribution of this paper is a proposal and description of the empirical estimate with su-
pervised interval selection. This advanced estimate is based on requirement to have at least k, where 
k is a positive integer, observations of socres of both good and bad client in each considered interval. 
A simulation study shows that this estimate outperform both the empirical estimate using deciles 
and the kernel estimate. Furthermore it shows high dependency on choice of the parameter k. If we 
choose too small value, we get overestimated value of the Information value, and vice versa. Adjusted 
square root of number of bad clients seems to be a reasonable compromise.

credit scoring, quality indexes, information value, empirical estimate, kernel smoothing

Credit scoring, it is a term for a wide spectrum of 
predictive models and their underlying techniques 
that aid fi nancial institutions in granting cred-
its. These methods decide who will get credit, how 
much credit they should get, and what further strat-
egies will enhance the profi tability of the borrowers 
to the lenders. 

 Methodology of credit scoring models and some 
measures of their quality were discussed in papers 
like Hand and Henley (1997) or Crook et al. (2007) 
and books like Anderson (2007), Siddiqi (2006), 
Thomas et al. (2002) and Thomas (2009). Further re-
marks connected to credit scoring issues can be 
found there as well.

Once a scoring model is available, it is natural to 
ask how good it is. To measure the partial processes 
of a fi nancial institution, especially their compo-
nents like scoring models or other predictive mod-
els, it is possible to use quantitative indexes such as 
Gini index, K-S statistic, Li� , Information value and 
so forth. They can be used for comparison of several 
developed models at the moment of development. 
It is possible to use them for monitoring the quality 
of models a� er the deployment into real business as 
well. See Wilkie (2004) or Siddiqi (2006) for more de-
tails.

The paper deals primarily with the Information 
value. Commonly it is computed by discretisation 
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of data into bins using deciles with requirement on 
the nonzero number of cases for all bins. As an al-
ternative method to the empirical estimates one can 
use the kernel smoothing theory, which allows to 
estimate unknown densities and consequently, us-
ing some numerical method for integration, to esti-
mate value of the Information value. The main ob-
jective of this paper is a description of the empirical 
estimate with supervised interval selection. This ad-
vanced estimate is based on requirement to have at 
least k, where k is a positive integer, observations of 
socres of both good and bad client in each conside-
red interval. A simulation study shows the perfor-
mance of this estimate compared to “clasical” em-
pirical estimate and kernel estimate. Furthermore, 
it shows high dependency on choice of the para-
meter k. 

Basic notations
Assume the realization s  R of random value 

S (score) is available for each client. Let D be the in-
dicator of good and bad client 

 1, client is good
D =  (1)
 0, client is bad

and let F0,F1 denote cumulative distribution func-
tions of score of bad and good clients, i.e. 

F0(a) = P(S ≤ a | D = 0),
F1(a) = P(S ≤ a | D = 1), a  R. (2)

Assume F0,F1 and their corresponding densities 
f0,f1 are continuous on R.

In practice, the empirical distribution functions 
are used 

 

 1 N 
F̂0(a) =  ∑ I(si ≤ a D = 0)
 m i=1  (3)

 1 N 
F̂0(a) =  ∑ I(si ≤ a D = 1), a  [L, H], 
 n i=1 

where si is the score of i-th client, n, m are the number 
of good and bad clients, respectively and N=n+m. L 
is the minimum value of given score, H is the maxi-
mum value. Finally, we denote 

 m
pB =  
 N 

the proportion of bad clients.

MATERIALS AND METHODS
The quality index based on densities is the Infor-

mation value (statistic) defi ned as 

 ∞ 
Ival =  fIV(x)dx, (4)
 −∞

where 

 f1(x) 
fIV(x) = (f1(x) − f0(x)) ln 
 f0(x) (5)

Note that the Information value is also called Di-
vergence. See Wilkie (2004), Hand and Henley (1997) 
or Thomas (2009) for more details. The example of 
fIV(x) for 10% of bad clients with f0:N(0,1) and 90% of 
good clients with f1:N(4,2) is illustrated in Fig. 1.

However, in practice, the procedure of computa-
tion of the Information value can be a little bit com-
plicated. Firstly, we don’t know the right form of den-
sities f0, f1 generally and secondly, mostly we don’t 
know how to compute the integral. I show some ap-
proaches to solve these computational problems.

The usual way, how to estimate the information 
value, is to replace unknown densities by their em-
pirical estimates. Let’s have m score values s0i

, i=1, …, 
m for bad clients and n score values s1j

, j=1, …,n for 
good clients and denote L(H) as the minimum (max-
imum) of all values, respectively. Let’s divide the in-
terval [L, H] up to r subintervals [q0, q1],(q1, q2], …, 
(qr−1, qr], where q0 = L − 1, qr = H and qi, i =1, …, r − 1 are 
appropriate quantiles of score of all clients. Set 

 m 
n0j = ∑ I(s0i  (qj−1, qj])
 i=1  (6)

 n 
n0j = ∑ I(s1i  (qj−1, qj]), j  1, …, r 
 i=1 

observed counts of bad or good clients in each inter-
val. Denote f̂IV(j) the contribution to the information 
value on jth interval, calculated by 

  n1j
  n0j

    n1j
m  

f̂IV(j) =   −   ln  , j = 1, …, r. (7) 
  n  m    n0j

n  

Then the empirical information value is given by

 r 
Îval = ∑ f̂IV(j). (8)
 j=1

However in practice, there could occur computa-
tional problems. The Information value index be-
comes infi nite in cases when some of n0j

 or n1j
 are 

equal to 0. When this arises there are numerous 
practical procedures for preserving fi nite results. 
For example one can replace the zero entry of num-

 
1: Contribution to Information value
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bers of goods or bads by a minimum constant of say 
0.0001. Choosing the number of bins is also very im-
portant. In the literature and also in many applica-
tions in credit scoring, the value r = 10 is preferred. 

I propose the alternative to the previous method, 
named the empirical estimate with supervised in-
terval selection. This approach builds on ideas in 
the previous part. Estimation of information value 
is given again by formulas (6) to (8). The main dif-
ference lies in construction of the intervals. Because 
we want to avoid zero values of n0j

 and n1j
, I simply 

looked for such selection of intervals, which pro-
vides such values n0j

 and n1j
, which are all positive. 

This will lead to situation when all fractions and log-
arithms in (7) are defi ned and fi nite. 

More generally, I propose to require to have at 
least k, where k is a positive integer, observations of 
socres of both good and bad client in each interval, 
i.e. n0j

 ≥ k and n1j
 ≥ k for j=1, …, r. Set

q0=L − 1

   k × i    m 
qi = F


0
−1    , i = 1, …,  (9)

   m     k 

q m   = H,
 + 1
  k 

where F


0
−1(.) is the empirical quantile function ap-

propriate to the empirical cumulative distribution 
function of scores of bad clients. [x] means lower 
integer part of number x. Usage of quantile function 
of scores of bad clients is motivated by the assump-
tion, that number of bad clients is less than number 
of good clients, which is quite natural assumption. 
If m is not divisible by k, it is necessary to adjust our 
intervals, because we obtain number of scores of 
bad clients in the last interval, which is less than k. 
In this case, we have to merge the last two intervals. 
This will lead to situation, when it holds n0j

 ≥ k for all 
computed intervals of scores. 

Furthermore we need to ensure, that the number 
of scores of good clients is as required in each inter-
val. To do so, we compute n1j

 for all actual intervals. If 
we obtain n1j  < k for jth interval, we merge this inter-
val with its neighbor on the right side. This is equiv-
alent with the removal of qj+1 from the sequence of 
borders of the intervals. This can be done for all in-
tervals except the last one. If we have n1j

 < k for the 
last interval, than we have to merge it with its neigh-
bor on the le�  side, i.e. we merge the last two inter-
vals. However, this situation is not very probable. 
If we have a reasonable scoring model, we can as-
sume that good clients have higher scores than bad 
clients. It means that we can expect that the number 
of scores of good clients is higher than number of 
scores of bad clients in the last interval. Due to con-
struction of the intervals, number of scores of bad 
clients in the last interval is greater than k. Thus, it is 
natural to expect that number of scores of good cli-

ents in the last interval is also greater than k. A� er all, 
we obtain n0j

 ≥ k and n1j
 ≥ k for all created intervals.

Very important is the choice of k. If we choose too 
small value, we get overestimated value of the Infor-
mation value, and vice versa. As a reasonable com-
promise seems to be adjusted square root of number 
of bad clients given by 

k = |√m|, (10)

where [x] means upper integer part of number x.
Denote f̂̂ IV(j) the contribution to the information 

value on jth interval, calculated by 

  n1j
  n0j

    n1j
m    

f̂̂ IV(j) =  − ln , j = 1, …, r, (11)
  n  m    n0j

n 

where n1j
 and n0j

 correspond to observed counts of 
good and bad clients in intervals created according 
to the procedure described in this chapter. The em-
pirical information value with supervised interval 
selection is now given by

 r 
Î̂val = ∑ f̂̂ IV(j). (12)
 j=1

In the previous part, I described some diffi  cul-
ties arisen by computing the Information value. To 
avoid them one can use another approach, which is 
proposed in Koláček and Řezáč (2010). As proposed 
in this paper, it is possible to use the kernel smooth-
ing theory to obtain estimates of unknown densities 
f0, f1. The kernel density estimates are defi ned by 

 1 m 
f̃ (x, h0) = ∑Kh0

(x − s0i
),

 m i=1
 (13)
 1 n 
f̃ (x, h1) = ∑Kh1

(x − s1i
),

 n i=1

where

 1   x 
Khi

 (x)=  K  , i = 0,1
 hi   hi  

and K is the Epanechnikov kernel 

 3 
K(x) =  (1 − x2)I[−1,1]. (14)
 4

For further details see Wand and Jones (1995). The 
quality of kernel density estimates is aff ected mainly 
by smoothing parameters h0 and h1. The estimation 
of optimal bandwidths hi can be given by maximal 
smoothing principal approach, i.e. 

  1  −  h̃0,m = 2,5324 ̃0m
 (15)
  1  −  h̃0,m = 2,5324 ̃0m ,

where ̃i, i = 0,1 are appropriate estimations of stan-
dard deviation for bad and good clients. For more 
details see Terrell (1990).
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The next step is to compute the fi nal integral. To 
estimate this one can use the composite trapezoidal 
rule. Set 

  f̃1(x, h1)  
f̃IV(x) = (f̃1(x, h1) − f̃0 (x, h0)) ln . (16)
  f̃0(x, h0)  

Then, for given M + 1 equidistant points L = x0, 
x1, …, xM = H we obtain 

 H − L   M−1   
Ĩval =  f̃IV(L) + 2 ∑ f̃IV(xi) + f̃IV(H)  . (17)
 2M   i=1  

The value of M is usually set from 100 to 1 000. As 
one has to trade off  between computational speed 
and accuracy, I propose to use M = 500. 

RESULTS
Firstly, it is natural to ask which estimate is the 

best. To compare them and get an answer, a short 
simulation study was done. Consider n clients, 10% 
of bad clients with f0:N(0,1) and 90% of good clients 
with f1:N(1,1). Because of normality of scores, we can 
compute the Information value (see Wilkie (2004)) 
as 

  μg − μb  2
Ival =     ,
   

where μg and μb are means of scores of good and bad 
clients,  is their common standard deviation. Given 
our choice of these parameters we know the value of 
Ival, which is equal to one. 

 Scores of bad and good clients were generated ac-
cording to given parameters. Firstly, the number of 
clients was set to n = 500. Estimates Ĩval, Îval and Î̂val were 
computed and remembered. These two steps were 
repeated one thousand times. Finally, averages and 
interquartile ranges for all three types of estimates 
were computed. Than the number of clients was 

set to n = 100 000 and the same computations were 
made. The results are given in Tab. I.

We can see that the best performance was ob-
tained for Î̂val, i.e the empirical estimate with super-
vised interval selection. The second best estimate 
was the kernel one. The empirical estimate, which 
used deciles, was outperformed by both of them. 

This order was preserved for both n = 100 000 and 
n = 500, i.e. very large and very small range of data. 
Although the interquartile ranges, as the robust es-
timate of dispersions, had reversed order, they took 
very similar values. Over all, Ĩval was signifi cantly bet-
ter than Îval and Î̂val was signifi cantly better than both 
Ĩval and Îval. Approptiate boxplots are shown in Fig. 2. 

The second part of this chapter is focused on 
properties of Î̂val depending on choice of parame-
ter k and depending on proportion of bad clients pB 
and diff erence of means of scores of bad and good 
clients μg − μb. Consider 10 000 clients, 100 × pB% 
of bad clients with f0:N(μb, 1) and 100 × (1 − pb)% of 
good clients with f1:N(μg, 1). Set μb = 0 and consider 
μb = 0.5, 1 and 1.5, pb = 0.02, 0.05, 0.1 and 0.2. The 
case μg − μb = 0.5, i.e. Ival = 0.25 in our settings, repre-
sents weak, μg − μb = 1 means high and μg − μb = 1.5 
very high performance of given scoring model. 2% 
bad rate (pb = 0.02) represents low risk portfolio, 
e.g. mortgages (before current crises). 20% bad rep-
resents very high risk portfolio, e.g. subprime cash 
loans.

I: Average and iqr of Ĩval, Îval and Î̂val for 500 and 100 000 clients

n = 500 average iqr

Îval 0.8008 0.2885

Ĩval 0.8410 0.3101

Î̂val 0.8898 0.3154

n = 100 000 average iqr

Îval 0.9420 0.0276

Ĩval 0.9779 0.0281

Î̂val 1.0010 0.0290

 
a)

b)
2: Box plots of Ĩval, Îval and Î̂val - (a) 500 clients, (b) 100 000 clients
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Appropriate data sets for simulation was ran-
domly generated 1 000 times. Quality of Îval was as-
sessed using mean squared error given by

MSE = E ((Îval − Ival)
2). (18)

Given this measure, denote

kMSE = argmin MSE. (19)
 k

Following Tab. II consists of kMSE for all considered 
values of pb and μg − μb. Values of k = |√m| are pre-
sented in the last row of the table.

We can see that kMSE is increasing according to pB. 
This is may be somewhat surprising, but it is quite 
natural. The increasing pB means increasing num-
ber of bad clients, becasuse the number of all cli-
ents was fi xed to 10 000. If we have enough of bad 
clients, then too small k leads to too many bins and 

consequently to overestimated results. But what is 
surprising, it is the dependence on μg − μb. While for 
weak models it is optimal to take very high number 
of observation in each bin, the contrary holds for 
high perfoming models. Overall, k = |√m| seems to 
be a reasonbale comprimise.

For completeness, Tab. III consists of average 
numbers of bins for all considered values of pB and 
μg − μb. We can see that they took values from 8 
to 127.

The dependece of Îval on k is illustrated in Fig. 3 to 5. 
The highlighted circles correspond to values of k, 
where minimal value of the MSE is obtained. The di-
amonds correspond to values of k given by (10).

Fig. 3 and Fig. 4 show that curves of MSE are quite 
fl at nearby its minimum. It means that a small devia-
tion of k from kMSE cause a small change in MSE. On 
the other hand Fig. 5 shows the strong dependence 
on choice of k. 

II: kMSE  depending on pB and diff erence of μg and μb

kMSE

pB

0.02 0.05 0.1 0.2

μg − μb

0.5 29 42 62 84

1 12 18 23 32

1.5 6 9 8 9

k = [√m] 15 23 32 45

III: Average number of bins depending on pB and diff erence of μg and 
μb

avg. # of bins
pB

0.02 0.05 0.1 0.2

μg − μb

0.5 8.00 13.00 18.00 24.90

1 18.00 28.80 42.76 51.88

1.5 33.62 50.20 95.96 127.67

 
 a) b)
3: Dependence of Î̂val and (b) MSE on k, 100 000 clients, μg − μb = 0.5



272  M. Řezáč

SUMMARY
 I focused on the Information value and described diffi  culties of its estimation. The most popular 
method is the empirical estimator using deciles of given score. But it can lead to infi nite values of Ival 
and so a remedy is necessary. To avoid these diffi  culties the kernel method was proposed. The advan-
tage of this approach is the smoothness of the contribution and easy implementation with a polyno-
mial kernel. Furthermore, I proposed the adjustment for the empirical estimate, called the empirical 
estimate with supervised interval selection. It is based on the assumption that we have at least some 
positive number of observed scores in each interval. This directly leads to situation when all fractions 
and all logarithms are defi ned and fi nite. Consequently, Ival is defi ned and fi nite.
 The simulation study showed that for normally distributed scores the empirical estimate with super-
vised interval selection outperformed both the kernel estimate and the “classical” empirical estimate. 
This was true for very large and very small range of data fi les. Furthermore, it is focused on properties 
of Î̂val depending on choice of parameter k and depending on proportion of bad clients and diff erence 
of means of scores of bad and good clients. It showed some surprising results that were discussed at 
the end of the paper. 

   
 a) b)
4: Dependence of (a) Î̂val and (b) MSE on k, 100 000 clients, μg − μb = 1

 
 a) b)
5: Dependence of (a) Î̂val and (b) MSE on k, 100 000 clients, μg − μb = 1.5
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