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Abstract
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The production planning in agriculture is one of the most important decision problems of the farmer. 
Although some decision support tools based mainly on linear programming and addressed to agri-
culture authorities were presented, their direct application by a farmer is not possible. This is mainly 
due to the local character of the models developed for particular agricultural conditions and also due 
to the complexness of underlying mathematical programming models.
This paper aims to develop dynamic programming model for the long run crop plan optimization 
covering the typical conditions of Czech farms, which could serve as a platform for further enlarge-
ments and changes according to needs and conditions of particular farm. The dynamic programming 
algorithm is developed in detail for model case of four areas to be planted by four crops each year. The 
possibility of covering diff erent constraints by generating the state space is discussed, and the gener-
ating procedure for crop rotation rules is shown. The goal function refl ects the farmers objective of 
profi t maximization and it is defi ned with respect to harvests’ randomness. The case study is solved 
for the data from South Moravian agriculture cooperative and the optimal solution is presented and 
discussed. 

production planning, MATLAB algorithm, crop rotation, dynamic programming 

For the past several decades the production plan-
ning problems in agriculture has been extensively 
studied from the mathematical point of view. Aim-
ing to develop the credible decision support tools 
for agricultural authorities, various models and 
mathematical approaches were employed. Begin-
ning with linear programming in 50’s, the models 
subsequently followed the development of math-
ematical programming techniques to the current 
dynamic optimization applications which refl ects 
the dynamic structure of planning problems in ag-
riculture. Recently the dynamic programming and 
optimal control techniques were applied in several 
studies concerning agroecosystem modelling (see 
Seppelt, 1999, Seppelt et al., 2002, Chikumbo et al., 
2003, Bond and Farzin, 2007, Parsons et al., 2009). 
Considering diff erent assumptions and simplifi ca-
tions refl ecting the unique local conditions, these 

contributions deal with modelling of the agroeco-
system concerning the biochemical and econom-
ical aspects of agriculture processes. Any of the 
model mentioned intends to serve as a decision sup-
port for upper level agriculture authorities. Apart 
from their local applicability due to the specifi c fea-
tures of local agriculture systems, the models men-
tioned are also very complex from the mathemati-
cal point of view and its solutions are uneasy to be 
obtained, i.e. the models are hardly directly applica-
ble by the decision maker. Moreover, the dynamic 
programming models are limited by the curse of 
dimensiona lity which matters in such a complex 
systems. On the other hand the dynamic program-
ming off ers straightforward user-friendly solution 
procedure for the medium scale problems- such as 
long-run crop plan optimization on a farm under 
agricultural constraints typical for Czech Republic. 
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In such a case, the simple dynamic programming al-
gorithm can be directly applied by the user and can 
also serve as a platform for further enlargements 
stemming from the particular additional constraints 
and conditions. 

The problem is to decide what is to be planted on 
particular pieces of arable land next period. The 
farmer’s goal is to gain a considerable profi t from the 
yield under the requirements of sustainable farming. 
Apart from many simple constraints these require-
ments include also crop succession rules which are 
uneasy to be covered by mathematical program. Re-
cently, there were studies on solving the problem of 
crop rotation by linear programming: for the repre-
sentation of crop succession restrictions via linear 
programming see (Klein Haneveld, Stegeman, 2004), 
in (Castelazzi, 2008) the so� ware tool was develo-
ped which can be used to create scenarios of crop-
ping systems and land use but it does not answer the 
question how large areas should be cropped by par-
ticular crop-plants. Since the crop rotation issue is 
of dynamic structure applying the methods of dy-
namic optimization is appropriate (for the particu-
lar case of dynamic programming approach to corn-
soybean farm in Illinois see Duff y and Taylor, 1992). 

This paper aims to develop unique dynamic pro-
gramming algorithm for the purpose of long-run 
crop plan optimization under crop succession 
rules, which can be used for further enlargements 
and applications for various conditions and needs 
of particular farmers. The algorithm is applied in 
the particular case of South Moravian agriculture 
coope rative.

In the following section the problem of the 
 farmer’s decision making and its model case is de-
scribed. Then, the method of dynamic program-
ming is briefl y summarized and the particular al-
gorithm used is developed in detail, applied on 
particular case of a farm, the results are discussed in 
separate section and the conclusions with respect to 
further development and application of the model 
are given.

METHODS AND RESOURCES

The representative farm
The problem of crop plan optimization will be 

solved for the particular case of South Moravian ag-
riculture co-operative (for details about the farm see 
Janová and Ambrožová, 2009). It is only for part of 
the arable land at farm that the historical crop pat-
tern is known in detail. Therefore, for the purpose of 
developing the dynamic programming model only 
this part of 123 ha of arable land will be considered. 
The area is naturally split into many small fi elds; 
each is cropped as a whole by one crop each year. 
For simplicity we will consider only four larger  areas 
(A, B, C, D), which cluster the fi elds into homoge-
nous parts (with respect to crop planted, yields, 
costs, etc.). For the acreage and initial sow plan see 
Tab. I. 

For the model case we will assume four crops can 
be planted each year. These crops represent the 
typi cal crops planted at the major part of the arable 
land at farm (for the particular crops and notatios 
see Tab. II).

The goal of the farmer is to gain a considerable 
profi t when the farm is running in the sustainable 
manner. In the conditions of Czech Republic the 
main agricultural restrictions to be covered are the 
crop rotation rules. These will be hold by specifi c 
defi nition of the state space in dynamic program. 
We will consider one year succession requirements 
as described in Tab. III. These crop rotation rules 
represent the basic principles of crop succession in 
the conditions of Czech Republic. Of course many 
other, more detailed rules could be considered 
(such as the multiple-year succession requirements, 
e.g. for oilseed rape the fi ve year period should be 
hold between re-sowing the plant on the same piece 
of land). But, as we will discuss in the Results section, 
these requirements could be involved in addition 
into the presented functioning dynamic model de-
veloped.

The real data sets from the South Moravian farm 
were used to obtain the desired parameters of the 
model. As we shall see in the next paragraph, there 
is a need for the information about the yields, prices 
and costs for the plants. The historical yields from 
1997 to 2008 can be seen in Tab. IV, the prices and 
cost per ton were set on values of 2008 and throug-
hout the calculations they were assumed to be con-
stant parameters (see Tab. V, for details see Janová 
and Ambrožová, 2009).

Dynamic programming
Dynamic programming is a mathematical optimi-

zation technique for formulating and numerically 
solving multi-stage decision problems (Bellman, 
1957). In dynamic programming the whole time pe-

I: Description of the fi eld areas

Area A B C D

Acreage [ha] 23.9 32.6 26.6 39.4

Initial sow 
plan

Corn 
silage

Oilseed 
rape

Corn 
silage

Spring 
barley

II: Notation of the crops

Crop Winter 
wheat

Spring 
barley

Corn 
silage

Oilseed 
rape

Notation 1 2 3 4

III: Crop rotation rules

Crop 1 2 3 4

Feasible 
preceding crops 3, 4 1, 3 1, 2, 3, 4 1, 2
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riod over which the decisions are made –the plan-
ning horizon – is divided into discrete and fi nite 
number of time periods in which the decisions are 
made. Each period n, n = 1, 2, …N+1 defi nes one stage 
of the sequential decision process and is associated 
with the state space Sn formed by the set of states 
sn, which represent all the feasible states of the sys-
tem in the period n. The feasibility of states is given 
by the constraints which must hold throughout the 
whole planning horizon (for more details about the 
dynamic programming and its applications see De-
nardo, 2003). In the crop planning optimization 
problem we have the following constraints:
• the crop rotation rules (see Tab. III),
• all four areas must be planted each year,
• each of the areas is cropped by one plant as 

a whole.
The state of the system in our problem can be de-

scribed by crop plan applied in particular stage 
(year). For example the initial state is 

s1 = (3 4 3 2),

which refl ects the situation when at the beginning of 
the planning horizon there is planted corn silage on 
area A and C, oilseed rape on area B and spring bar-
ley on D. The feasible states in the following stage can 
be generated according to crop rotations rules (see 
Tab. III) and possibly other constraints, e.g. there are 
16 possible crop plans in the second stage. The fi rst 
task in dynamic programming is therefore to estab-
lish the state space Sn for each stage n. In our problem 
this was made in the fi rst part of the dynamic pro-
gramming algorithm developed in MATLAB (see ap-
pendix). The state space Sn was composed of all states 
which were feasible for at least one state in stage n−1.

The decision maker will determine the state sn+1 

by invoking management decision dn (sn) from fi -
nite discrete set D (sn) of decisions associated with sn. 
In our problem the decisions are restricted by the 
crop rota tion rules, hence, given the current state, 
the decision maker is allowed to plan for the next 
stage only feasible crop plans from the standpoint of 
crop rotation. Selecting decision dn for state sn earns 

reward r(sn, dn) and cause the transition to the state 
sn+1 = t(sn, dn). This reward corresponds to the objec-
tive function of the optimization problem. The ob-
jective of our problem is to maximize the profi t 
from yields in the long run perspective, which set 
the reward to:

 4

 = ∑ (pi − ci) × qi × xi(dn), (1)
 i=1

where pi and ci is price per ton and costs per ton of 
crop plant i, respectively, qi is the yield in tons per 
hectare of the crop plant i and xi is the area in hec-
tares where the crop plant i is cropped (the argu-
ment dn refers to the particular decision, i.e. the areas 
xi are determined by the decision dn about the next 
crop plan). In the reward function (1), one must take 
into account, that the yields qi are random variables. 
Hence, we must face the stochastic nature of the 
processes involved in the decision making. We will 
adopt the approach suggested by Freund for the lin-
ear programming optimization of a sowing plan for 
a next period. Denoting the profi t per 1 ha of area 
planted by crop i by

z1 = (pi − ci)qi (2)

we can consider zi to be a random variable. Follow-
ing (Freund, 1956), we assume zi ~ n(i, i

2). Then the 
reward function (1) with random parameters can be 
replaced by the Markowitz function 

 a
r(dn) =  x ∑ xT − xT,  (3)
 2

where ∑ denotes the covariance matrix of the ran-
dom vector (z1, z2, z3, z4), x = (x1(dn), x2(dn), x3(dn), x4(dn)) 
and a is the risk aversion coeffi  cient. The maximi-
zation of profi t reward (1) can be now replaced by 
mini mization of the deterministic function (3) which 
represents the diff erence between the variability and 
the mean value of the total profi t for a crop plan. 

Having defi ned the reward function, the rewards 
can be counted for each decision in each stage. Note, 
that in our particular case, the reward depends only 
on the decision done (i.e. on the crop plan chosen 
for the next stage, see (3)). Hence, having chosen 
one particular feasible crop plan for the next stage, 
the reward from this decision will be the same what-
ever the current crop plan is. 

Let the initial crop plan in the stage 1 be given by 
the state s1 and the aim is to plan the crop plans for 
the next N periods. We do not determine any goal 
state in stage N+1. Such a formulation represents an 

IV: History of yields (t/ha)

crop 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

winter wheat 5.41 6.25 5.76 5.70 5.85 5.69 4.76 6.48 6.74 4.54 6.28 7.66

spring barley 4.80 4.28 4.89 3.80 4.31 4.50 4.93 5.39 4.61 3.51 3.28 4.56

corn silage 27.84 34.36 32.35 38.22 26.96 36.50 17.00 23.79 24.95 25.31 29.03 36.34

oilseed rape 2.67 3.14 3.05 4.12 3.30 2.60 2.05 3.91 3.29 3.27 2.73 3.29

V: Crop plants – Production costs and selling prices 

i Crop Costs ni (Kč/t) Price pi (Kč/t)

1 winter wheat 3 500 3 900

2 spring barley 4 000 5 300

3 corn silage 550 600

4 oilseed rape 8 000 8 800
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initial value problem which can be solved by recur-
sive fi xing (see, Denardo, 2003) derived for each state 
in S N+1. The goal is to identify the sequence of deci-
sions (d1*, d2*, d3*, d4*) with highest total reward. The 
recursive relationship describing the system and 
deter mining optimal sequence of decisions (d1*, d2*, 
d3*, d4*) is then

  0 for n = N + 1
f(sn) =         ,
  max {r(dn) + f[t(sn, dn)]}  for n < N + 1 

where is the maximum total reward obtainable at 
stages n through N+1 if state is occupied.

MATLAB algorithm
The algorithm described qualitatively in the pre-

ceding paragraph was developed for the particular 
case of a South Moravian farm in MATLAB (see Ap-
pendix 1). Since there is a specifi c structure of the 
optimization problem it is possible to assign the re-
ward to each possible state in our problem (for four 
crops rules and four areas to be planted, there is 44 

= 256 possible states of the system) no matter which 
state was occupied in the preceding stage (varibles 
state_space and reward_space contains the possible 
states and rewards respectively). The rewards were 
computed using additional function consider-
ing the farm data (see Appendix 2). Finally, to each 
possible state the feasible successive states were as-
signed (feasible_next_states array).

The information about the recursive fi xing pro-
cedure is contained in the DP array. For each stage t 
the (256 x 256 + 2) matrix DP {t} contains the infor-
mation about states in the stage (in the fi rst column) 
and the best successive state in the next stage. In the 
last column there is a value of the total reward ob-
tained when the optimal path leads through states 
given at the row (0 means not occupied, 1 means that 
the state is occupied), see the Fig I. 

RESULTS AND DISCUSSION
The optimization problem was solved for 10–

years planning period in the particular case of the 
South Moravian farm. The risk aversion coeffi  cient 
of the farmer was set to a = 1.10−6, which is the value 
used in (Freund, 1956) and confi rmed as realistic for 
the particular farm in (Janová, 2010). The results of 
the program is the sequence of crop plans as follows:

 3 4 3 2 
 2 2 2 3 
 1 3 3 2 
 4 2 2 3 
 2 3 1 2 
 1 2 4 3 
 4 3 2 2 
 2 2 1 3 
 3 3 4 2 
 2 2 2 1 . 

The fi rst line represents the initial crop plan (corn 
silage, oilseed rape, corn silage, spring barley) the 
second line the optimal crop plan for next year etc. 

As we have mentioned above the presented model 
is a small scale example of the crop plan optimiza-
tion. The algorithm can be applied directly for dif-
ferent planning horizon and the similar technique 
could be used for more homogeneous areas and/ or 
more crop plants involved. For the realistic  problem 
of whole farm planning the knowledge of expected 
profi t for the planning horizon could be of use. 
Since the goal function used in the dynamic pro-
gram has no practical meaning due to the stochasti-
city of initial goal function, the expected profi t 
should be evaluated using the mean values of profi ts 
per hectare. Other possibility is to run Monte Carlo 
simulations of harvests and evaluate the profi t per-
formance of optimal solution from the long run per-
spective. Easily the profi t in the initial goal function 
could be replaced by its present value which would 
be transferred also into the reward function. 

The dynamic programming algorithm presented 
is appropriate also for more complex optimization 
of the sowing plan concerning more constraints. 
The matter of constraints is covered by properly 
generated state space in each stage of the dynamic 
program. Hence, more constraints involved more 
complicated defi nition of state space and of feasi-
ble following states for each state. The dynamic pro-
gramming algorithm as itself would work in current 
form up to probably more complex structure of ar-
ray DP. There is a possibility to enlarge the current 
dynamic programming model by covering addi-
tional constraints on
• crop rotation rules considering the longer succes-

sion requirements periods than one year,
• limitations on total areas cropped by particular 

crops,
• limitations on total costs, etc.

In further possible enlargement of the model 
the randomness of the prices could be considered, 
since actually the prices are unknown in the mo-
ment of planning the crop planting. The Markov-
ian property of these prices mentioned in (Duff y 
and Taylor, 1993) enables to solve the general sto-
chastic dynamic programming problem via Markov 
chains. This would change the structure of dynamic 
programming algorithm, hence for the presented 
model, the possibility of long run econometric es-
timation or expert estimation of prices would be 
more appropriate.

statesfeasiblecurrent
reward

reward

tDP

statefurtherbest

0

0

00000

01000
00000
00010

0

1
1
0
1

 

1: Example of the matrix DP{t}
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SUMMARY
The aim of the paper was to present the simple dynamic programming algorithm for the problem 
of long–run crop plan optimization at Czech farm. The initial performance criterion was the profi t 
from yields and the long run sustainability of farming was ensured by considering the crop rotation 
rules. Since the profi ts from yields are random variables due to the randomness of harvests (the selling 
prices of crop plants are considered to be known constants), the performance criterion was changed 
and Markowitz model was applied. Hence, the reward for the decision about particular crop plans 
were calculated as the diff erence between the term representing the variance of the total profi t and 
the mean profi t. 
The algorithm for particular case of four fi eld areas (each cropped by one crop as a whole) and four 
typical crop plants were developed in MATLAB. The algorithm was applied for particular case of 
South Moravian farm for ten years planning horizon, the optimal solution was found and discussed. 
The possibilities of further enlargement and applications of the algorithm were listed: there is a pos-
sibility to directly apply the algorithm for various planning horizons, the presented algorithm can be 
simply rebuilt to cover the optimization problem for more areas and/or more crop plants involved 
and a� er re–defi ning the state space generating process, it is possible for more complex restrictions 
on long-run crop succession requirements to be covered by the dynamic programming algorithm 
presented. 
The MATLAB code is presented, which may serve as a base for individual changes and enlargement 
with respect to particular needs and conditions of the farm.
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Appendix 1
state_space = npermutek([1 2 3 4],4); %generating the whole set of possible states, function npermutec can 
be downloaded at 
http://www.mathworks.com/matlabcentral/fi leexchange/11462-npermutek
for j=1:256

v=state_space(j,:);
reward_space(j)=reward(v); 

%function ohodnoceni evaluates each state according to the reward function (3) for the particular case of 
agricultural cooperative
end
%initial crop plan 
osev0=[3 4 3 2];
%planning horizont in years 
years=10;

%generating the feasible states 

 for j=1:256 
  pocstavnext(j)=1;
  for n=1:4 
   if state_space(j,n)==1
    possibilities(n)= 2;
    admissible{n}=[3,4];
   end 
   if state_space(j,n)==2
    possibilities(n)= 2;
     admissible{n}=[1,3];
   end 
   if state_space(j,n)==3 
    possibilities(n)= 4;
     admissible{n}=[1,2,3,4];
   end
   if state_space(j,n)==4
    possibilities(n)= 2;
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    admissible{n}=[1,2];
   end

 pocstavnext(j)=pocstavnext(j)*possibilities(n);

 end

 i=1;
  for hon1=1:possibilities(1)
  states{j}(i,1)= admissible{1}(hon1);
   for hon2=1:possibilities(2)
    states{j}(i,2)= admissible{2}(hon2);
     for hon3=1:possibilities(3)
    states{j}(i,3)= admissible{3}(hon3);
     for hon4=1:possibilities(4)
    states{j}(i,4)= admissible{4}(hon4);
      if i<pocstavnext(j)
       states{j}(i+1,:)=states{j}(i,:);
       i=i+1;
      end
   end
   end
 end 
end

[c, ia, ib] = intersect(states{j},state_space,’rows’); 
feassible_next_states{j}=ib; 

end 

[c, ia, ib] = intersect(osev0,state_space,’rows’);
N=256;
tree{1}=zeros(N,N+1);
tree{1}(ib,1)=1;

%describing the decision tree 

for t=2: years
 tree{t}=zeros(N,N+1);

 for j=1:N 
  if tree{t−1}(j,1)==1
   for p=1:size(feassible_next_states{j})
    pom=feassible_next_states{j}(p);
    tree{t}(pom,1)=1
     tree{t}(pom,j+1)=1; 
   end 
  end
 end
end

%dynamic programinc algorithm
DP{years}=zeros(N,N+2); 
DP{years}(:,1)=tree{years}(:,1);
DP{years}(:,N+2)=reward_space’;

 for a=1:(years−1)
 t=years−a
 DP{t}=zeros(N,N+2);
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 DP{t}(:,1)=tree{t}(:,1);
 for j=1:N 
  if DP{t}(j,1)==1
    for p=1:size(feassible_next_states{j})  
    pom=feassible_next_states{j}(p);
   UF=DP{t+1}(pom,N+2)+reward_space(j); 
    if  UF<DP{t}(j,N+2)
     DP{t}(j,2:end)=zeros(1,N+1);  
     DP{t}(j,pom+1) =1;
     DP{t}(j,N+2)=UF; 
    end
   end
  end

 end
end

%visualization of the optimal crop plan sequence
 path=zeros(1, years);
 path(1)=ib;
  for t=2:years
  for j=1:N
  if DP{t−1}(path(t−1),j+1)==1
  path(t)=j 
  end
  end
 end
 solution=zeros(years,4);
 t=1:years
 solution(t,:)=state_space(path(t),:);
solution 

Appendix 2
function [zisk] = reward(v) %v je vstupni parametr- radkovy vektor konkretniho oseti

zisky= [575 3851 1940 1706 2291 1667 −1960 4748 5762 −2818 3968 9350;
 7664 4908 8141 2364 5067 6074 8353 10791 6657 827 −392 6392;
 798 4710 3504 7026 270 5994 −5706 −1632 −936 −720 1512 5898;
 −760 3376 2584 12000 4784 −1376 −6216 10152 4696 4520 −232 4696];
Z=zisky’;
kovariancni_matice=cov(Z);
prumerne_zisky=[2590; 5571; 1727; 3185];
a=0.000001;% risk aversion coeffi  cient
hony=[23.9 32.6 26.6 39.4];
rozlohy=[0 0 0 0];
for n=1:4 
for k=1:4 
   if v(n)==k
    rozlohy(k)= rozlohy(k)+hony(n);%ha
   end
end
end

pom1=rozlohy*kovariancni_matice;
pom2=rozlohy*prumerne_zisky;
pom3=pom1*rozlohy’;
zisk=pom3*0.5*a-pom2;

end
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