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Abstract

BARTOŇ, S., SEVERA, L. BUCHAR, J.: New algorithm for biological objects’ shape evaluation and data reduc-
tion.  Acta univ. agric. et silvic. Mendel. Brun., 2010, LVIII, No. 1, pp. 13–20

The paper presents the so� ware procedure (using MAPLE 11) intended for considerable reduction of 
digital image data set to more easily treatable extent. The example with image of peach stone is pre-
sented. Peach stone, displayed on the digital photo, was represented as a polygon described by the co-
ordinates of the pixels creating its perimeter. The photos taken in high resolution (and corresponding 
data sets) contain coordinates of thousands of pixels – polygon’s vertexes. Presented approach substi-
tutes this polygon by the new one, where smaller number of vertexes is used. The task is solved by use 
of adapted least squares method. The presented algorithm enables reduction of number of vertexes 
to 10 % of its original extent with acceptable accuracy +/− one pixel (distance between initial and fi nal 
polygon). The procedure can be used for processing of similar types of 2D images and acceleration of 
following computations.

image processing, data reduction, least square method

The acquisition and analysis of the visual informa-
tion represents powerful tool for interpretation of 
large range of input data. The origin of computer vi-
sion is intimately intertwined with computer history, 
having been motivated by a wide spectrum of im-
portant applications such as robotics, biology, medi-
cine, industry and physics, but also agricultural and 
food sciences in last decades. Among all diff erent as-
pects underlying visual information, the shape of 
the objects certainly plays a special role. The multi-
disciplinarity of image analysis, with respect to both 
techniques and applications, has motivated a rich 
and impressive set of information resources repre-
sented e.g. by book Costa and Cesar (2009).

Precise and correct image processing enables solv-
ing problems of multidisciplinary nature, complet-
ing images and objects in terms of features (implying 
several distinct objects to be mapped into the same 
representation), pattern recognition used for seg-
menting an image into its constituent parts, proper 
validation of algorithms, and/or improving the rela-
tion between continuous and discrete approaches.

In fact “computer vision” (or generally image pro-
cessing) o� en requires, sometimes real time, pro-
cessing of a very large and heterogeneous data sets 
(including shape, spatial orientation, color, tex-

ture, motion, etc.). Extensive image fi les or series of 
images are processed e.g. in medicine (Söhn et al., 
2005; Zagrodsky et al., 2005; Li et al., 2006), bio-
logical studies (Tománková et al., 2006; Klotz et al., 
2007), but also in agricultural sciences (Yahya et al., 
2009; Zadravec and Žalik, 2009; Zhong et al., 2009) 
or food sciences (Havlíček et al., 2008; Severa, 2007; 
Severa, 2008). In spite of increasing hardware per-
formance, large or sometimes huge data sets o� en 
cause problems and certain data reduction, regu-
larization and/or modifi cation is needed. There are 
several generally accepted approaches to achieve 
this task. One of the most commonly used methods 
is Principal Component Analysis (PCA). Principal 
Component Analysis is a technique that simplifi es 
data sets by reducing their dimensionality. It is o� en 
used to decompose shape variability into a reduced 

set of interpretable components. It is an orthogonal 
linear transformation that spans a subspace, which 
approximates the data optimally in a least-squares 
sense (Jolliff e, 1986). This is accomplished by max-
imizing the variance of the transformed coordi-
nates. If the dimensionality of the data is to be re-
duced to N, an equivalent formulation of PCA is to 
fi nd the N-set of orthonormal vectors, grouped in 
the P matrix, which minimizes the error made when 
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reconstructing the original data points in the data 
set. This method was successfully used in number 
of works – see e.g. Vidal et al. (2005), Iglesias et al. 
(2007), Havlíček et al. (2008). There are alternative 
approaches such as LDA (Linear Discriminant Anal-
ysis) – see e.g. Wang et al. (2004) or PFA (Principal 

Factor Analysis) – see e.g. Ballester et al. (2005).
This paper presents completely diff erent ap-

proach, where input image data are signifi cantly re-
duced (to 10 % of original extent) by means of MA-
PLE 11 algorithm without loss of precision. Example 
with peach stone is presented. Reduced data sets can 
be consequently used for faster processing and/or 
further utilization. MAPLE so� ware environment 
have been successfully used for determination of 
agricultural products shape (Bartoň, 2000; Bartoň, 
2007; Bartoň, 2008).

MATERIAL AND METHODS

Digital photo
A sample digital photo of peach stone of Red 

Heaven variety (harvested in July 2008 in region of 
Southern Moravia) has been used. But any similar 
object of natural of artifi cial origin could have been 
used. The photo has been taken by digital camera 
Olympus SP–55OUZ with resolution of 7.1 Mpixels, 
see Fig. 1.

Processing so� ware
A so� ware MAPLE 11, classic has been used to 

perform all presented calculations.

Computing procedure

The best line
Let us assume polygon given by the list of N points 

with coordinates [[X1, Y1], …, [Xi, Yi], …, [XN, YN]]. 
Let us select sublist of vertexes N1 … N2, 1 <= N1 < N2 
<= N, N2−N1>= 2. The task is to fi nd parameters of 

common line p1 which will minimize 
 N2

 ∑ di
2

 i=N1
, where 

di = length of the line segment between ith and pith
 

point. The point is the intersection of the line per-
pendicular to the line p1 going through ith point with 
the line p1.

Lists of lines and corresponding points
A� er defi nition of best line, the procedure can 

continue in computing of best line for remaining 
points from the list of the vertexes and smoothing 
the polygon.

Estimating of accuracy
A� er polygon approximation it is possible to com-

pute distances di for input polygon vertexes using 
corresponding line segments. It is possible to com-
pute their average values and variance. These values 
may be used to determine accuracy of approxima-
tion.

Maple procedure
The complete Maple procedure for presented ap-

proach can be seen in the fi rst author’s personal web 
pages: user.mendelu.cz/barton.

RESULTS AND DISCUSSION

The best line
The best form of the line p1, corresponding to 

the above mentioned problem is p1: = (x − Qx) sin(φ) + 
(Qy − y) cos(φ) = 0, where [Qx, Qy] are coordinates of 
the point lying on this line and φ is its direction an-
gle, see Fig. 2.

In this case the coordinates of the pith
 point are as 

follows:

Xpi = (−Qx cos(φ) − sin(φ) Qy + sin(φ) Yi + Xi cos(φ)) 
cos(φ) + Qx

and

Ypi = (−Qx cos(φ) − sin(φ) Qy + sin(φ) Yi + Xi cos(φ)) 
sin(φ) + Qy. (1)

1: A sample digital photo of the peach stone
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The square of the distance from the line p1 is di
2 = 

(Xi − Xpi)
2 + (Yi − Ypi)

2, where Xpi and Ypi are defi ned 
by the equation (1). The sum of the squares of 

the distances di for all N points is 
 N2

 ∑ di
2 = SoS

 i=N1
,

SoS = −2cos(φ) sin(φ) (QyQx (N2 − N1 + 1) + ∑2 − Qy 
∑3 − Qy ∑4) + ((N2 − N1 + 1) Qx2 − 2Qx ∑3 + ∑1) sin(φ)2 
+ ((N2 − N1 + 1) Qy2 − 2Qy ∑4 + ∑5) cos(φ)2, (2)

where

 N2  N2  N2  N2  N2

∑1 = ∑ Xi
2, ∑2 = ∑ Yi Xi, ∑3 = ∑ Xi, ∑4 = ∑ Yi, ∑5 = ∑ Yi

2

 i=N1  i=N1  i=N1  i=N1  i=N1 .

These substitutions accelerate computation of 
 N2

 ∑ di
2

 i=N1
, because it is faster to calculate all sums only 

ones and to substitute obtained results instead of 
computing each sum as indicated in (2) or in the fol-
lowing expressions. The condition for the global 

minimum of SoS(Qx, Qy, φ) is 
 ∂
⎯⎯ SoS = 0
 ∂Qx

, 

 ∂
⎯⎯ SoS = 0
 ∂Qy

 and 
 ∂
⎯⎯ SoS = 0
 ∂Qφ

. First and second equa-

tion consequently yields in 
 ∑3Qx = ⎯⎯⎯⎯⎯
 N2 − N1 + 1

, 

 ∑4Qy = ⎯⎯⎯⎯⎯
 N2 − N1 + 1

. If these values are substituted into 

the third equation, the result has a following form:

S2 sin(φ)2 + S1 cos(φ)sin(φ) + S3 cos(φ)2 = 0,

where below listed substitutions (3)

S1 = 2∑4
2 − 2∑1N1 + 2∑1 − 2∑5 − 2∑5N2 + 2∑5N1 − 2∑3

2 + 
2∑1N2,

S2 = −2∑4∑3 + 2∑2N2 − 2∑2N1 + 2∑2,

S3 = 2∑2N1 − 2∑2 − 2∑2N2 + 2∑4∑3

simplify equation (3) and its solution for φ. Equation 
(3) has two roots:

 ⎛ S1  √S1
2 − 4S2S3 ⎞

φ1 = arctan ⎜− ⎯ + ⎯⎯⎯⎯⎯ ⎟
 ⎝ 2  2S2 ⎠

 and 

 ⎛ S1  √S1
2 − 4S2S3 ⎞

φ2 = arctan ⎜ ⎯ + ⎯⎯⎯⎯⎯ ⎟
 ⎝ 2  2S2 ⎠

. (4)

The fi rst root leads to the global minimum of 
the SoS, the second one to the global maximum. 
Therefore it is possible to continue with φ = φ1. Fol-
lowing substitution

 S2cos(φ) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 √2S2

2 + S12 + S1√S12 − 4S2S3 − 2S2S3

and 

 (S1 + √S1
2 − 4S2S3)√2

sin(φ) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 √2S2

2 + S12 + S1√S12 − 4S2S3 − 2S2S32
 (5)

will simplify computations of (4). In special cases, 
when line p1 is parallel with x or y axis S2 = 0, this 
substitution converts into cos(φ) = 0, sin(φ) = 1 or 
cos(φ) = 0, sin(φ) = 0. In these cases, proper values of 
cos(φ) and sin(φ) must be found, to obtain smaller 
value of SoS.

Lists of lines and corresponding points
The best line for the fi rst three points from 

the list of vertexes can be computed as follows. Let 
us assume N1=1 and N2=3 for this particular case. 
The best line p1 can be found for each point with 
consequent computing of corresponding square 
of the distance di and fi nding the maximum of dis-
tances Dist = max([dN1, …, di, …, dN2]. If the value is 
smaller than predefi ned accuracy L, it is possible to 
increase N2=N2+1 and repeat the whole process un-
til accuracy is satisfying. Values of N2, correspond-

2: The best line
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ing values of Qx, Qy, cos(φ), sin(φ) describing the best 
line for the vertexes N1 … N2, and Dist can be stored 
into the lists. The highest N2 satisfying condition 
Dist < kL can be determined from these lists, where 
k is the correction value depending on smoothness 
of the polygon. If the polygon is smooth k → 0.5, for 
non-smooth polygons k → 0.2. It is possible to use 
the value of k ~ 0.5, but it must be considered that 
value Dist is function of N2 and if it ones exceeds k L, 
it may be again lower for higher value of N2. This ap-
proach leads to higher number of fi nal polygon ver-
texes. In this case the data reduction will not be so 
eff ective. The reason, why the value k = 1 cannot be 
used will be discussed later.

As a next step, the points [XpN1
, YpN1

], [XpN2
, YpN2

] 
must be recorded into the list LXY, ordinary num-
bers of the border points N2 are recorded into 
list LN2, and value N1 put equal to N2, (N1 = N2). 
The whole process can be repeated with the sub-
sequent vertexes from the list of polygon vertexes. 
The procedure is repeated until N2 < N. Finally, 
the both lists will contain n elements. The list LXY 
can be displayed as a list of separate line segments 
approximating initial polygon. The ordinary num-
bers of vertexes of the input polygon corresponding 
to the i-th line can be picked from the list LN2 as se-
ries if integer numbers from LN22i−1 to LN22i. These 
lists contain information about line segment – best 
line and input polygon vertexes corresponding to 
the line segment. But the line segments are not con-
nected one with each other – see Fig. 3. The best line 
segments are displayed as a red-dashed line, input 
polygon vertexes are displayed as red crosses and 
polygon vertexes with ordinary numbers N2 are 
blue-circled. These points correspond to endpoints 
of the best line segments.

The endpoint of one line segment [XpN2
, YpN2

] and 
initial point of the subsequent line segment [XpN1

, 
YpN1

] correspond to the same vertex of the input 

polygon. These points are very close, but not iden-
tical, because they correspond to the diff erent line 
segments. The points are displayed in Fig. 3 as blue 
boxes – end points of the best line segments. These 
couples of points can be substituted by their mid-
points and they are displayed as green diamonds 
[Xc, Yc] = 5([XpN2

, YpN2
] + [XpN1

, YpN1
] in Fig. 3. As a re-

sult, continuous curve is obtained, displayed as 
black line segments, creating polygon with reduced 
number of vertexes approximating input polygon. 
Center points will be recorded in a new list LC. Be-
cause new polygon vertex [Xc, Yc] is a midpoint cor-
responding to the projection of the same vertex of 
the initial polygon to diff erent best lines, this point 
does not lay on these best lines, but it is close to both 
of them and the new line segments do not corre-
spond to the preceding line segments – best lines. 
Therefore it is necessary to put k<1. As k → 0, these 
line segments are shorter, the number of vertexes of 
the fi nal polygon increases, but accuracy of the ap-
proximation is better. Diff erent scale for x and y axis 
is used for better overview of Fig. 3. Thus expected 
right angles are displayed as distorted.

The result can be displayed graphically, see Fig. 4. 
The fi gure displays peach stone perimeter described 
by 3866 red points. Corresponding polygon is substi-
tuted by polygon with 109 vertexes with predefi ned 
accuracy of 5 pixels. Approximating polygon is dis-
played by blue line and its vertexes are indicated by 
blue circles. Since the diff erence between blue and 
red line is smaller then line thickness itself, the blue 
line is not visible. It can be seen that with data reduc-
tion 1:35, the accuracy is satisfying.

Estimating of the accuracy
The most eff ective method is to compute absolute 

value di and argument φi of the vector vi = [Xi − Xpi, 
Yi − Ypi], see Fig. 2, which can be used for the dem-
onstration of accuracy precision. If the best line seg-

3: The best line segments and part of corresponding polygon
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ment is defi ned by its endpoints, [Xc1, Yc1] and [Xc2, 
Yc2], see previous section, the distance di and orien-
tation φi can be computed using very simple expres-
sions:

 (Xc2 − Xc1) Yi − (Yc2 − Yc1) Xi + Xc1 Yc2 − Xc2 Yc1di = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 √(Xc2

2 − Xc1)2 + (Yc2 − Yc1) 2
, 

 ⎛ Yc1 − Yc2 ⎞
φi = arctan ⎜ ⎯⎯⎯⎯ ⎟
 ⎝ Xc2 − Xc1 ⎠

,

where (6)

Xc2 = LC2j−1, 1, Yc2 = LC2j−1, 2, Xc1 = LC2j, 1, Yc1 = LC2j, 2,

LN2j<= i <= LN2j+1 and 1 <= j <= n.

This approach enables to display accuracy in po-
lar coordinates. For the peach stone presented in 
Fig. 4, the corresponding accuracy is visualized in 
Fig. 5. As can be seen, the real accuracy is +/− 2 pix-
els only. It means that the worst accuracy achieved is 
about 0.3 % of the object size and the average accu-
racy indicated by the thick blue line is +/− 0.7 pixels, 
approximately 0.1%. Variances of the accuracy are 
displayed as the thin blue lines.

It is possible to plot vertexes of the input polygon 
and the resulting polygon. The example with dis-
tances di magnifi ed 25-times is shown in Fig. 6.

It is possible to complete the algorithm by weight 
list – signifi cance of individual points, W. The weight 
list is intended pro data processing in the so� wares 
directly computing optimum regression function. 

The relations can be determined as a mean of length 
value of both segments trajecting through the points. 
The relation has a following form:

 √(Xci−1
− Xci

)2 + (Yci−1
− Yci

)2 + √(Xci+1
− Xci

)2 + (Yci+1
− Yci

)
Wi = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 2

.

 (7)

The diff erence between regression function with 
and/or without including of weights is displayed in 
Fig. 7. The red line represents the function approx-
imating the stone’s shape in polar coordinates with 
coordinate origin in [129.58, 46.647],
Red = 388.90 − 92.140cos(f) − 56.561sin(f) + 
102.11cos(2. f)
+ 2.1903sin(2. f) − 37.708cos(3. f) − 15.099sin(3. f)
+ 48.019cos(4. f) − 0.045109sin(4. f) − 20.729cos(5. f)
− 12.624sin(5. f) + 17.420cos(6. f) − 3.9376sin(6. f)
− 9.1169cos(7. f) − 9.8685sin(7. f) + 8.3158cos(8. f)
− 2.7700sin(8. f) − 9.0515cos(9. f) − 6.4355sin(9. f) (8)

The blue line represents the regression function 
including weights. The coordinates origin is situated 
in [1.071, 50.786].
Blue = 394.34 + 6.5714 cos(f) − 61.163 sin(f) + 109.42 
cos(2. f)
− 4.0914 sin(2. f) − 27.195 cos(3. f) − 17.868 sin(3. f)
+ 39.961 cos(4. f) − 0.44939 sin(4. f) − 8.1234 cos(5. f)
− 11.572 sin(5. f) + 17.217 cos(6. f) − 1.2986 sin(6. f)
− 4.8608 cos(7. f) − 8.3769 sin(7. f) + 4.5218 cos(8. f)
− 2.7134 sin(8. f) − 0.051671 cos(9. f) − 9.8102 sin(9. f)
 (9)

4: Peach stone shape and its approximation



18 S. Bartoň, L. Severa, J. Buchar

SUMMARY
Extensive image fi les or series of images are to be o� en processed and such procedures can represent 
demanding task for hardware as well as so� ware environment. Partial data reduction with maintain-
ing the original information and achievement of maximum accuracy is thus eff ective and useful tool 
for further computations or generally image data processing. This paper introduces the so� ware ap-
proach of reducing the large volume of digital image data to 3 % of its original extent. MAPLE 11 clas-
sic was used to perform all presented computations. Digital image (resolution of 7.1 Mpixels) of peach 
stone was used as an input fi le. Object displayed on the digital photo, was represented by a polygon. 
This polygon was described by the pixels’ coordinates, where individual pixels created the object’s 

5: Visualisation of accuracy approximation 

6: The distance between input and resulting polygons (di magnified 25x) 
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perimeter. In the given example, the object’s perimeter consisted of 3866 pixels (polygon’s vertexes). 
Given polygon was substituted by the new one with 109 vertexes. The list of vertexes of the input 
polygon must be sorted in such way, that line segments connecting consecutive points create perim-
eter of the polygon. Vertexes must be therefore sorted clockwise or counterclockwise. Average dis-
placement between approximating and input polygon was +/− 0.7 pixels (which represents 0.1% of 
the object size) with maximum displacement approximately 2 pixels (0.3 % of the object size).
Proposed procedure is of general nature and can be used for data reduction in case of other biologi-
cal as well as artifi cial shapes. It can serve as an eff ective and precise tool for acceleration of process-
ing computing and for enabling the calculation itself on less powerful hardware, such as common PC 
with MS EXCEL and/or in case of data processing using non-linear regression methods.

SOUHRN
Nový algoritmus pro stanovení tvaru biologických objektů s redukcí dat

Zpracování digitálních obrazů klade velmi vysoké požadavky na technické i programové vybavení 
počítače. Proto se jeví redukce objemu zpracovávaných dat při zachování maximální možné přes-
nosti jako významný nástroj, použitelný zejména v oblasti zpracovávání digitálních obrazových in-
formací.
V předkládaném článku je popsán postup redukce objemu zpracovávaných dat na 3 % původní ve-
likosti. Pro vypracování algoritmu byl použit program Maple 11 classic. Jako vstupní obraz byl pou-
žit obrys broskvové pecky, sejmutý v rozlišení 7.1 Mpixelu. Obrys je zaznamenán v souboru jako po-
lygon, popsaný pomocí souřadnic jednotlivých vrcholů tak, že úsečka spojující po sobě následující 
vrcholy tvoří obvod polygonu. Proto vrcholy vstupního polygonu musí být v seznamu uspořádány 
ve směru nebo proti směru pohybu hodinových ručiček. V použitém případě je obrys tvořen polygo-
nem o 3866 vrcholech a byl nahrazen polygonem o 109 vrcholech. Průměrný rozdíl vzdáleností mezi 
originálním a aproximujícím polygonem činí +/−0.7 pixelu, což činí 0,1% velikosti objektu a nejvyšší 
vzdálenost je přibližně dva pixely, což je 0,3% velikosti objektu.
Předkládaný algoritmus je zcela obecný a může být použit pro redukci objemu dat popisujících i jiné 
biologické nebo další objekty. Může sloužit jako výkonný a přesný nástroj vhodný ke zrychleni zpra-
cování obrazu a může umožnit zpracování obrazu na počítačích s menším výkonem, např. na běž-
ných PC s programem MS Excel. Použití algoritmu v případě navazujícího zpracování za pomocí ne-
lineárních regresních metod je nutností.

obrazová analýza, redukce dat, metoda nejmenších čtverců

The research has been supported by the Grant Agency of the Czech Academy of Sciences under Con-
tract No. IAA201990701.

7: Regression function with/without weights included, blue and red line respectively
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