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The paper derives a parametric defi nition of the set of third-order orthonormal real matrices.
The derivation is done in several partial steps. First a generalized unit matrix is introduced as the sim-
plest case of an orthonormal matrix along with some of its properties and, subsequently, the proper-
ties of orthonormal matrices are proved that will be needed.
The derivation itself of a parametric defi nition of third-order orthonormal matrices is based on 
the numbers of zero entries that are theoretically possible. Therefore, it is fi rst proved that a third-or-
der square matrix with the number of non-zero entries diff erent from nine, eight, fi ve, or three can-
not be orthonormal.
The number of diff erent ways in which the set of third-order orthonormal matrices can be pa ra me te-
ri zed is greater than one. The concepts of a rotation matrix and a fl op-enabling rotation matrix are in-
troduced to motivate the parameterization chosen.
Given the product of two rotation matrices and one fl op-enabling rotation matrix, it is fi rst proved 
that it is a third-order orthonormal matrix. In the last part of the paper, it is then proved that such 
a product already includes, as special cases, all the third-order orthonormal matrices. It is thus a para-
metric defi nition of all third-order orthonormal matrices.

orthonormal matrix, parameterization, rotation matrix, rotation matrix with possible axis polarity 
change

Calibration approach is o� en used in processing 
data obtained from multiple sources or by multi-
ple diff erent procedures. It may be encountered in 
a number of disciplines ranging from engineering to 
medicine where it is used for diagnostic purposes.

The most precisely frequently used calibration 
models are linear ones. What all the calibration 
models have in common is that they are designed to 
fi nd (use input data to estimate) a real matrix which 
is then used as a basis of what is called a calibration 
function (Myšková, 2007, 2006).

If the model of a real-life situation can be inter-
preted in such a way that none of the data acquiring 
procedures chosen systematically distorts the real-

life situation (or all the data acquiring procedures 
chosen do distort the real-life situation basically in 
the same way) and no other a priori information is 
known about the real-life situation which could be 
added as additional conditions of the model, then 
we say that this is a linear calibration of non-speci-
fi ed identical objects (Moll, Myšková; 2007). The fact 
that such objects are identical formulated mathe-
matically then means that the calibration matrix is 
orthonormal.

Estimating the parameters of a linear calibration 
model always requires solving a nonlinear mini-
mization problem. Generally, such problems tend 
to be rather sensitive to more parameters being in-
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troduced than necessary. Minimization problems 
with more parameters and additional conditions are 
much more complex than those with less parame-
ters and no additional conditions ([Moll, Myšková; 
2007). This is the reason why the set of orthonormal 
matrices should be parameterized with a minimum 
of parameters and with no additional conditions. 

The set of two-dimensional orthonormal matrices 
with identical determinant can be described using 
a single parameter and, among all the diff erent pa-
rameterizations of this set, usually it is no prob-
lem to fi nd a bijective mapping. However, three-di-
mensional orthonormal matrices already lack these 
properties favourable for parameterization.

MATERIAL AND METHODS – BASIC CONCEPTS

Defi nition 1: A square (n/n) real matrix M is orthonormal if MMT = MTM = E where E is a unit (n/n) matrix.
Note: From Defi nition 1 immediately follows that det i ∈ {−1, 1}.
Defi nition 2: An (n/n) matrix with exactly n non-zero entries from the set {−1, 1} such that no two non-

zero entries are on a single row and no two non-zero entries are in a single column will be called a ge ne ra li-
zed unit matrix.

Theorem 3: Let M be an orthonormal (n/n) matrix with entries mij. Then:
All the entries of a. M are in the interval [−1, 1].

Let, for some b. i ∈ {1, 2, …, n} and j ∈ {1, 2, …, n}, |mij| = 1. Then all the other entries of M in row i and column 
j are zeros.

Let c. n ≥ 2 and let exists with an entry mij for which |mij| = 1. Let matrix N be created by striking out row 
i and column j from matrix M. Then N is orthonormal.

Let d. Mbe diff erent from generalized unit matrix. Create matrix N by striking out all rows and all columns 
from matrix M containing an entry from the set {−1, 1}. Then N is orthonormal.

Proof:
Ad a) Suppose that, for a fi xed entry mij of matrix M, we have |mij| = 1.Then, in matrix MMT, the entry at the  

i-th diagonal position is greater than one, which contradictory to the defi nition of an orthonormal matrix 
M.

Ad b) Let one of the other entries of matrix Mon row i or column j, say mij, be non-zero. Then MMT = E is 
not true.

Ad c) According to what was said the above, we have 

 ⎛ ⎛ 0 ⎞ ⎞
 ⎜ ⎜ . ⎟ ⎟
 ⎜M11 ⎜  ⎟ M12⎟ ⎜ ⎜ . ⎟ ⎟
 ⎜ ⎝ 0 ⎠ ⎟
M = ⎜(0 . . 0)  mij  (0 . . 0)⎟
 ⎜ ⎛ 0 ⎞ ⎟
 ⎜ ⎜ . ⎟ ⎟
 ⎜M21 ⎜  ⎟ M22⎟ ⎜ ⎜ . ⎟ ⎟
 ⎝ ⎝ 0 ⎠ ⎠

. Hence 

 ⎛ ⎛ 0 ⎞ ⎞
 ⎜ ⎜ . ⎟ ⎟
 ⎜M11MT

11+M12MT
12 ⎜  ⎟ M11MT

21+M12MT
22⎟ ⎜ ⎜ . ⎟ ⎟

 ⎜ ⎝ 0 ⎠ ⎟
E = MMT = ⎜(0 . . 0)  1  (0 . . 0)⎟
 ⎜ ⎛ 0 ⎞ ⎟
 ⎜ ⎜ . ⎟ ⎟
 ⎜M21MT

11+M22MT
12 ⎜  ⎟ M21MT

21+M212MT
22⎟ ⎜ ⎜ . ⎟ ⎟

 ⎝ ⎝ 0 ⎠ ⎠

.

The proof follows immediately from the equation 
 ⎛M11MT

11+M12MT
12 M11MT

21+M12MT
22⎞NNT = ⎜ ⎟

 ⎜M21MT
11+M22MT

12 M21MT
21+M212MT

22⎟ ⎝ ⎠
 and from 

the previous equation.
Ad d) The proof follows from the previous item.
Theorem 4: Let M and N be two orthonormal matrices of the same size. Then MN is an orthonormal ma-

trix.
Proof: The theorem is well known and its proof is very simple: MN(MN)T = MNNTMT = MEMT = MMT = E.

RESULTS – DERIVING A PARAMETERIZATION

Theorem 5: Let M be a (3/3) orthonormal matrix. Then M has at most six zero entries.
Proof: Suppose that a (3/3) matrix M has more than six zero entries. It is easy to see that det(M) = 0. This is, 

however, in contradiction to the properties of M as an orthonormal matrix.
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Theorem 6: Let M be a (3/3) orthonormal matrix having exactly six zero entries. Then three of its non-
zero entries are in the set {−1, 1} and no two non-zero entries are on the same row and no two non-zero en-
tries are in the same column (this means that M = E*).

Proof: Let at least two from three of the non-zero entries of M be on the same row (in the same column). It 
is easy to see that then det(M) = 0and so M is not orthonormal. The fact that three of the non-zero entries are 
in the set {−1, 1} follows immediately from the equation MMT = E.

Theorem 7: A (3/3) orthonormal matrix M cannot have exactly two entries from the set {−1, 1}.
Proof: Let M has exactly two entries in the set {−1, 1}. Then, by Theorem 3b), these entries are neither on 

the same row nor in the same column. By striking out the rows and columns containing such entries, a (1/1)
orthonormal matrix is obtained. There are, however, exactly two such matrices – namely (1) and (−1). Thus, 
M contains a third entry from the set {−1, 1}.

Theorem 8: Let M be a (3/3) orthonormal matrix. Then the number of its zero entries is in the set {0, 1, 4, 
6}.

Proof:

The matrix a. 

 ⎛ 1 √� 3 ⎞
 ⎜ ⎯ ⎯ ⎯ ⎟
 ⎜ 2 4 4 ⎟
 ⎜ √� 5 3√� ⎟
M = ⎜ − ⎯ − ⎯ ⎯⎯ ⎟ ⎜ 4 8 8 ⎟
 ⎜ 3 3√� 1 ⎟
 ⎜ ⎯ − ⎯⎯ − ⎯ ⎟
 ⎝ 4 8 8 ⎠

 has no zero entry. By direct calculation it can be verifi ed that it is or-

thonormal.

The matrix b. 

 ⎛  1 √� ⎞
 ⎜ 0 ⎯ ⎯ ⎟
 ⎜  2 2 ⎟
 ⎜ 1 3 √� ⎟
M = ⎜ − ⎯ − ⎯ ⎯⎯ ⎟ ⎜ 2 4 4 ⎟
 ⎜ √� √� 1 ⎟
 ⎜ ⎯ − ⎯⎯ − ⎯ ⎟
 ⎝ 2 4 4 ⎠

 has one zero entry. By direct calculation it can be verifi ed that it is 

orthonormal.

Let a matrix c. M have exactly two zero entries. These zero entries are neither on the same row nor in 
the same column. If they were on the same row (in the same column), then the only non-zero entry on 
this row (in this column) would be an element u of the set {−1, 1}. By Theorem 3b) then, M has at least four 
zero entries.

Let the zero entries of M be mij, mkl for i ≠ k, j ≠ l, i, j, k, l ∈ {1, 2, 3}. Let r ∈ {1, 2, 3} − {j, l}. Then, since M is or-
thonormal, we have mir·mkr = 0,which is in contradiction to the assumption. Thus M cannot have exactly 
two non-zero entries.
Let the d. M have exactly three zero entries. Then these zero entries must be on diff erent rows and in diff  e-
rent columns, which can be proved in much the same way as above and again, as above, it can be shown 
that such a situation cannot occur.

The matrix e. 

 ⎛    ⎞
 ⎜ 1 0 0 ⎟
 ⎜    ⎟
 ⎜  √�  √�  ⎟
M = ⎜ 0 ⎯⎯ ⎯⎯ ⎟ ⎜  2 2 ⎟
 ⎜  √�  √�  ⎟
 ⎜ 0 − ⎯⎯ ⎯⎯ ⎟
 ⎝  2 2 ⎠

 has four zero entries. By direct calculation it can be verifi ed that it is 

orthonormal.

Let a matrix f. M have exactly fi ve zero entries. Then two columns contain two zero entries each and the ab-
solute value of the remaining entry in these columns equals one. This means that M has two more non-
zero entries. By Theorem 3b), at least one of these must be equal one and thus M must have at least six 
zero entries, which is a contradiction.

The unit (3/3) matrix is orthonormal and has six zero entries.g. 

By Theorem 5, a matrix h. M cannot have more than six zero entries.

Defi nition 9: Let n ≥ 2 be a natural number.
We denote by a. Xn

p,q(α) an (n/n) matrix (xij)
n
i,j=1 in which, for {p, q} ∈ {1, 2, …, n}2, p < q; xii = 1 for i ∈ {1, 2, …, n} − 

{p, q}; xpp = xqq = cosα, xpq = sinα, xqp = −sinα; and xii = 0 for the remaining index pairs, i.e. for (i, j) ∈ {1, 2, …, 
n}2 − {(1, 1), (2, 2), …, (n, n), (p, q), (q, p)}. We will call Xn

p,q(α) a matrix of α-rotation between axis q and axis p or 
rotation matrix for short.
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Let b. Xn
p,q(α) be a matrix of α-rotation between axis q and axis p and  r ∈ {1, 2, …, n} − {p, q}. If, in Xn

p,q(α), 
the entry on row r and in column r for one chosen r is replaced by the symbol εr, the resulting matrix will 
be called an r-fl op-enabling matrix of α-rotation between axis q and axis p and denoted Xn

p,q(α; εr).

Note: Putting εr = −1 will cause a change in the polarity of axis r. Putting εr  = 1 means that the polarity of 
axis r remains the same.

Example: Let n = 3. For a given fi xed α, there are three matrices of α-rotation. Next we will only use the ma-

trices 
 ⎛ cosα sinα 0 ⎞
 ⎜    ⎟
X3

1,2(α) = ⎜ −sinα cosα 0 ⎟ ⎜    ⎟
 ⎝ 0 0 1 ⎠

 and 
 ⎛ 1 0 0 ⎞
 ⎜    ⎟
X3

2,3(α) = ⎜ 0 cosα sinα ⎟ ⎜    ⎟
 ⎝ 0 −sinα cosα ⎠

.

Note: Theorems 10 to 13 can be proved by direct computation.
Theorem 10: Each rotation matrix and each fl op-enabling rotational matrix in which either εr = 1 or εr = −1 

is orthonormal.
Theorem 11: Let, for a natural number n ≥ 2, Xn

p,q(α) be a matrix of α-rotation between axis q and axis p and 
Xn

p,q(β) a matrix of β-rotation between axis q and axis p. Then both matrix Xn
p,q(α) · Xn

p,q(β) and matrix Xn
p,q(β) · 

Xn
p,q(α) are matrices of (α + β)-rotation between axis q and axis p, that is, Xn

p,q(α) · Xn
p,q(β) = Xn

p,q(α + β) and Xn
p,q(β) · 

Xn
p,q(α) = Xn

p,q(α + β).
Corollary 12: Let, for a natural number n ≥ 2, Xn

p,q(α) be a rotation matrix. Then the matrix Xn
p,q(−α) is a ma-

trix inverse toXn
p,q(α).

Theorem 13: Let n = 3, X3
2,3(ϑ) be a matrix of ϑ-rotation between the third and second axes, X3

1,2(ϕ; ε3) be 
a matrix of ϕ-rotation between the second and fi rst axes with a change in the polarity of the third axis if nec-
essary, and  X3

2,3(α) be a matrix of α-rotation between the third and second axes, then X3
2,3(ϑ) · X3

1,2(ϕ; ε3) · X3
2,3(α) 

has the form 
⎛ cosϕ cosα·sinϕ sinα·sinϕ ⎞
⎜    ⎟
⎜ − cosϑ·sinϕ cosϑ·cosα·cosϕ − ε3sinϑ·sinα cosϑ·sinα·cosϕ + ε3sinϑ·cosα ⎟⎜    ⎟
⎝ sinϑ·sinϕ −sinϑ·cosα·cosϕ − ε3cosϑ·sinα −sinϑ·sinα·cosϕ − ε3cosϑ·cosα ⎠

.

Note: The above theorem is shown as a motivation to the selection of parameterization in the following 
theorem.

Theorem 14: Let M be a (3/3) orthonormal matrix with all its entries are non-zero or containing a single 
zero entry which is one of the entries m22, m23, m32, m33 and ε ∈ {−1, 1}. Then there exists a triple 
 ⎧ ⎧ π ⎫ ⎧ ⎧ π 3π ⎫ ⎧ ⎧ π 3π ⎫
(ϕ, ϑ, α) ∈ ⎨(0, π) − ⎨ ⎯ ⎬× ⎨(0, 2π) − ⎨ ⎯, π ⎯ ⎬× ⎨(0, 2π) − ⎨ ⎯, π ⎯ ⎬
 ⎩ ⎩ 2 ⎭ ⎩ ⎩ 2 2 ⎭ ⎩ ⎩ 2 2 ⎭ such that

 ⎛ cosϕ cosα·sinϕ sinα·sinϕ ⎞
 ⎜    ⎟
M = ⎜ − cosϑ·sinϕ cosϑ·cosα·cosϕ − ε·sinϑ·sinα cosϑ·sinα·cosϕ + ε·sinϑ·cosα ⎟ ⎜    ⎟
 ⎝ sinϑ·sinϕ −sinϑ·cosα·cosϕ − ε·cosϑ·sinα −sinϑ·sinα·cosϕ − ε·cosϑ·cosα ⎠

.

Proof: Let M be an arbitrary real orthonormal (3/3) matrix, M = (mij)
3
i,j=1 with all its entries being non-zero or 

only with the entry m33 being zero. Then each of the M entries is in the interval (−1/1). The function f(x) = cosx 
is an injection in (0, π) mapping it onto the interval (−1/1). Therefore, without loss of generality, an arbitrary 

but fi xed ϕ ∈ (0, π) can be chosen assuming that m11 = cosϕ. Since m11 ≠ 0, we have 
 π
ϕ ≠ ⎯
 2 .

Further, m2
11 + m2

12 + m2
13 = 1 implies m2

21 + m2
31 = 1 − m2

11 = 1 − cos2ϕ = sin2ϕ. Hence m2
21 = sin2ϕ − m2

31. The last 
equation implies |m21| ≤ |sinϕ|. Again, using the fact that f(x) = cosx is an injection in [0, π] mapping it onto 
the interval [−1, 1] and choosing an arbitrary but fi xed ϑ ∈ (0, π) without loss of generality, we can assume 

that m21 = −sinϕ·cosϑ. The condition m21 ≠ 0 implies 
 π
ϑ ≠ ⎯
 2

. Again, we can use the equation m2
11 + m2

12 + m2
13 = 1 

obtaining m2
31 = 1 − m2

11 = 1 − cos2ϕ −sin2ϕ·cos2ϑ = sin2ϕ·sin2ϑ. Hence |m31| ≤ |sinϕ·sinϑ|. The last equation can 
be satisfi ed in two diff erent ways. Either m31 ≤ sinϕ·sinϑ or m31 ≤ −sinϕ·sinϑ. These two equations can be writ-

ten as m31 ≤ sinϕ·sinϑ provided that the set of the possible values of ϑ is extended to
 ⎧ π 3π ⎫
ϑ ∈ (0, 2π) − ⎨ ⎯, π ⎯ ⎬
 ⎩ 2 2 ⎭

.

Now reasoning similar to that used for column one can also be applied to row one of the matrix M. This 

yields m12 ≤ sinϕcosα and m13 ≤ sinϕsinα for 
 ⎧ π 3π ⎫
α ∈ (0, 2π) − ⎨ ⎯, π ⎯ ⎬
 ⎩ 2 2 ⎭

.

Denoting m22 = a, we can use the equation m2
12 + m2

22 + m2
32 = 1 to obtain  m2

32 = 1 − m2
12 − m2

22 = 1 − sin2ϕcos2α − 
a2. Hence either m32 = √1 − sin2ϕ.cos2α − a2 or m32 = −√1 − sin2ϕ.cos2α − a2 . Thus m32 = ε3√1 − sin2ϕ.cos2α − a2 
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where ε3 ∈ {−1, 1}. By the same reasoning, we can use the equation m2
21 + m2

22 + m2
23 = 1 to obtain 

m23 = ε4√1 − sin2ϕ.cos2ϑ − a2 where ε4 ∈ {−1, 1}.
Let us now summarize the preceding reasoning in a matrix M. Denoting m33 = b we can write 

 ⎛ cosϕ sinϕ·cosα sinϕ·sinα ⎞
 ⎜    ⎟
M = ⎜ −sinϕ·cosϑ a ε4√1 − sin2ϕ.cos2ϑ − a2 ⎟ ⎜    ⎟
 ⎝ sinϕ·sinϑ ε3√1 − sin2ϕ.cos2α − a2 b ⎠

.

The scalar product of the fi rst two columns of M is zero. This leads to an equation  sinϕ·cosϕ·cosα − 
a·sinϕ·cosϑ + ε3sinϕ·sinϑ√1 − sin2ϕ.cos2α − a2 = 0 or to an equation sinϕ·cosϕ·cosα − a·sinϕ·cosϑ = −ε3sinϕ·sinϑ
√1 − sin2ϕ.cos2α − a2. Squaring both sides of the equation yields sin2ϕ·cos2ϕ·cos2α + a2sin2ϕ·cos2ϑ − 
2asin2ϕ·cosϕ·cosα·cosϑ = sin2ϕ·sin2ϑ·(1 − sin2ϕ·cos2α − a2).

Since sinϕ ≠ 0, the last equation can be reduced by sin2ϕ, which yields cos2ϕ·cos2α + a2·cos2ϑ − 
2a·cosϕ·cosα·cosϑ = sin2ϑ·(1 − sin2ϕ·cos2α − a2). Hence cos2ϕ·cos2α + a2·cos2ϑ − 2a·cosϕ·cosα·cosϑ − sin2ϑ + 
sin2ϑ·sin2ϕ·cos2α + a2·sin2ϑ = 0. A� er some simplifi cation then a2 − 2a·cosϕ·cosα·cosϑ + (cos2ϕ·cos2α − sin2ϑ + 
sin2ϑ·sin2ϕ·cos2α) = 0.

Now let us view the last equation as a quadratic equation with the unknown a in 
the form a2 − 2aK + L = 0. Its solutions can be written as a = K ± √ K2 − L. We have 
√K2 − L  = √cos2ϕ.cos2α.cos2ϑ − (cos2ϕ·cos2α − sin2ϑ + sin2ϑ·sin2ϕ·cos2α), hence √K2 − L  = 
√−cos2ϕ.cos2α.sin2ϑ + sin2ϑ − sin2ϑ·sin2ϕ·cos2α), which then yields √K2 − L  = |sinα·sinϑ|. Thus, 
we have a = cosϕ·cosα·cosϑ − εsinα·sinϑ where ε ∈ {−1, 1}. Hence m32 = ε3√1 − sin2ϕ.cos2α − a2 = 
ε3√1 − sin2ϕ.cos2α − (cosϕ·cosα·cosϑ − εsinα·sinϑ)2and m32 = ε3√(εsinα·cosϑ + cosϕ·cosα·sinϑ)2, which means 
that m32 = ±(εsinα·cosϑ + cosϕ·cosα·sinϑ).

Substituting this result into the matrix again, we get 
 ⎛ cosϕ sinϕ·cosα sinϕ·sinα ⎞
 ⎜    ⎟
M = ⎜ −sinϕ·cosϑ cosϕ·cosα·cosϑ − εsinα·sinϑ ε4√1 − sin2ϕ.cos2ϑ − a2 ⎟ ⎜    ⎟
 ⎝ sinϕ·sinϑ ±(ε·sinα·cosϑ + cosϕ·cosα·sinϑ) b ⎠

.

The scalar product of the fi rst two columns of M is zero. This will give us the sign of m23 with m32 = 
−cosϕ·cosα·cosϑ − ε·sinα·sinϑ.

A� er substitution, matrix M will have the form
⎛ cosϕ sinϕ·cosα sinϕ·sinα ⎞
⎜    ⎟
⎜ −sinϕ·cosϑ cosϕ·cosα·cosϑ − εsinα·sinϑ ε4√1 − sin2ϕ.cos2ϑ − (cosϕ·cosα·cosϑ − εsinα·sinϑ)2 ⎟⎜    ⎟
⎝ sinϕ·sinϑ −cosϕ·cosα·cosϑ − εsinα·sinϑ b ⎠

. Since 

m23 = ε4√1 − sin2ϕ.cos2ϑ − (cosϕ·cosα·cosϑ − εsinα·sinϑ)2 we can write m23 = ε4√(εcosα·sinϑ + cosϕ·sinα·cosϑ)2 
and so m23 = ±(εcosα·sinϑ + cosϕ·sinα·sinϑ).

A� er substitution, matrix M will have the form
⎛ cosϕ sinϕ·cosα sinϕ·sinα ⎞
⎜    ⎟
⎜ −sinϕ·cosϑ cosϕ·cosα·cosϑ − εsinα·sinϑ ±(cosϕ·sinα·cosϑ + εcosα·sinϑ) ⎟⎜    ⎟
⎝ sinϕ·sinϑ −cosϕ·cosα·cosϑ − εsinα·sinϑ b ⎠

. We have

b2 = 1 − sin2ϕsin2α − (cosϕ·sinα·cosϑ + εcosα·sinϑ)2, b2 = (εcosα·cosϑ − cosϕ·sinα·sinϑ)2 and hence b =
= ±(cosϕ·sinα·sinϑ − εcosα·cosϑ).

This means that 
 ⎛ cosϕ sinϕ·cosα sinϕ·sinα ⎞
 ⎜    ⎟
M = ⎜ −sinϕ·cosϑ cosϕ·cosα·cosϑ − ε·sinα·sinϑ ±(cosϕ·sinα·cosϑ + ε·sinϑ·cosα) ⎟ ⎜    ⎟
 ⎝ sinϕ·sinϑ −cosϕ·cosα·cosϑ − ε·sinα·sinϑ ±(cosϕ·sinα·sinϑ + ε·cosα·cosϑ) ⎠

.

The equation
cosϕ·sinϕ·sinϑ − sinϕ·cosϑ[±(cosϕ·sinα·cosϑ + εcosα·sinϑ)] + sinα·sinϑ[±(cosϕ·sinα·sinϑ − εcosα·cosϑ)] = 0

yields immediately
m23 = cosϑ·sinα·cosϕ + ε·sinϑ·cosα, m33 = −sinϑ·sinα·cosϕ + ε·cosϑ·cosα.
The theorem is proved for the case of all the entries of M being non-zero or only entry m33being zero. If 

some of the entries m23, m32, m22 is zero, we can proceed in much the same way.
Note: Let M is the same matrix as in Theorem 14, then detM = ε.
Note: The assumption that only one of the entries m22, m23, m32, m33 is zero is not substantial and the theo-

rem may be extended without change to all (3/3) orthonormal matrices with one zero entry. Using a special 
choice of parameters, also all (3/3) orthonormal matrices that contain more than one zero entry can be writ-
ten in the form shown above. This parameter choice, however, is not unique in all cases.
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SUMMARY
The paper deals with the need to parameterize three-dimensional orthonormal matrices in terms of 
linear calibration. The set of orthonormal matrices is parameterized with three continuous and one 
discrete parameter. The meaning of the continuous parameters is obvious from the introduced con-
cept of a rotation matrix while the meaning of the discrete parameter is explained by the rotation ma-
trix with a change of axis polarity if necessary.

SOUHRN
Parametrizace ortonormálních matic třetího řádu pro lineární kalibraci

Práce řeší potřebu parametrizace trojrozměrných ortonormálních matic z hlediska lineární kali-
brace. Množina ortonormálních matic je parametrizována třemi spojitými a jedním diskrétním pa-
rametrem. Smysl jednotlivých spojitých parametrů je zřejmý ze zavedeného pojmu matice otočení 
a význam diskrétního parametru vysvětluje matice otočení s případnou změnou polarity osy.

ortonormální matice, parametrizace, matice otočení, matice otočení s případnou změnou polarity 
osy
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