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Abstract

MOLL, 1., MYSKOVA, K .: Parameterization of orthonormal third-order matrices for linear calibration. Acta univ.
agric. et silvic. Mendel. Brun., 2009, LVII, No. 6, pp. 163-168

The paper derives a parametric definition of the set of third-order orthonormal real matrices.

The derivation is done in several partial steps. First a generalized unit matrix is introduced as the sim-
plest case of an orthonormal matrix along with some of its properties and, subsequently, the proper-
ties of orthonormal matrices are proved that will be needed.

The derivation itself of a parametric definition of third-order orthonormal matrices is based on
the numbers of zero entries that are theoretically possible. Therefore, it is first proved that a third-or-
der square matrix with the number of non-zero entries different from nine, eight, five, or three can-
not be orthonormal.

The number of different ways in which the set of third-order orthonormal matrices can be paramete-
rized is greater than one. The concepts of a rotation matrix and a flop-enabling rotation matrix are in-
troduced to motivate the parameterization chosen.

Given the product of two rotation matrices and one flop-enabling rotation matrix, it is first proved
that it is a third-order orthonormal matrix. In the last part of the paper, it is then proved that such
aproductalready includes, as special cases, all the third-order orthonormal matrices. Itis thus a para-
metric definition of all third-order orthonormal matrices.

orthonormal matrix, parameterization, rotation matrix, rotation matrix with possible axis polarity
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Calibration approach is often used in processing
data obtained from multiple sources or by multi-
ple different procedures. It may be encountered in
anumber of disciplines ranging from engineering to
medicine where it is used for diagnostic purposes.

The most precisely frequently used calibration
models are linear ones. What all the calibration
models have in common is that they are designed to
find (use input data to estimate) a real matrix which
is then used as a basis of what is called a calibration
function (Myskova, 2007, 2006).

If the model of a real-life situation can be inter-
preted in such a way that none of the data acquiring
procedures chosen systematically distorts the real-

life situation (or all the data acquiring procedures
chosen do distort the real-life situation basically in
the same way) and no other a priori information is
known about the real-life situation which could be
added as additional conditions of the model, then
we say that this is a linear calibration of non-speci-
fied identical objects (Moll, My3kové; 2007). The fact
that such objects are identical formulated mathe-
matically then means that the calibration matrix is
orthonormal.

Estimating the parameters of a linear calibration
model always requires solving a nonlinear mini-
mization problem. Generally, such problems tend
to be rather sensitive to more parameters being in-

163



164

I. Moll, K. Myskovd

troduced than necessary. Minimization problems
with more parameters and additional conditions are
much more complex than those with less parame-
ters and no additional conditions ([Moll, Myskovs;
2007). This is the reason why the set of orthonormal
matrices should be parameterized with a minimum
of parameters and with no additional conditions.

The set of two-dimensional orthonormal matrices
with identical determinant can be described using
a single parameter and, among all the different pa-
rameterizations of this set, usually it is no prob-
lem to find a bijective mapping. However, three-di-
mensional orthonormal matrices already lack these
properties favourable for parameterization.

MATERIALAND METHODS - BASIC CONCEPTS

Definition 1: A square (n/n) real matrix M is orthonormal if MM =M"M = E where E is a unit (n/n) matrix.

Note: From Definition 1 immediately follows that deti e {1, 1}.

Definition 2: An (1n/n) matrix with exactly n non-zero entries from the set {-1, 1} such that no two non-
zero entries are on a single row and no two non-zero entries are in a single column will be called a generali-

zed unit matrix.

Theorem 3: Let M be an orthonormal (n/n) matrix with entries m . Then:

a. Allthe entries of M are in the interval [-1, 1].

b. Let,forsomeie(1,2,...,n}andje(1,2,...,n}, |mi].| =1.Then all the other entries of Min row i and column

jare zeros.

c. Letn 22 and let exists with an entry m, for which Im,| = 1. Let matrix N be created by striking out row
iand column j from matrix M. Then Nis orthonormal.

d. Let Mbe different from generalized unit matrix. Create matrix N by striking out all rows and all columns
from matrix M containing an entry from the set{-1, 1}. Then Nis orthonormal.

Proof:

Ad a) Suppose that, for a fixed entry m, of matrix M, we have |mi}.| =1.Then, in matrix MM, the entry at the
i-th diagonal position is greater than one, which contradictory to the definition of an orthonormal matrix

M.
Ad b) Let one of the other entries of matrix Mon row i or column j, say m,, be non-zero. Then MM'= E is
not true. 0
M11 . M]Z
0
Ad c¢) According to what was said the above, we have M=|(0..0)m, (0..0)|. Hence
: :
: M, M,
M11M7£1+M12M§2 M11M£1+M12]\4—£Z 2 . 2
0 0
E=MMT"={(0..0) 1 (0..0)].
0
M21M1£1+MZZM€Z . M21M£1+M212M£2
0

The proof follows immediately from the equation NN™=

the previous equation.
Ad d) The proof follows from the previous item.

M11M1 +M]2MZ M11M€1+M12M€2 and from
M21M1£1+M22M1£2 M21M£1+M212M§2

Theorem 4: Let M and N be two orthonormal matrices of the same size. Then MN is an orthonormal ma-

trix.

Proof: The theorem is well known and its proof is very simple: MN(MN)T = MNN™M™ = MEM™ = MM’ = E.

RESULTS - DERIVING A PARAMETERIZATION

Theorem 5: Let M be a (3/3) orthonormal matrix. Then M has at most six zero entries.
Proof: Suppose that a (3/3) matrix M has more than six zero entries. It is easy to see that det(M) = 0. This is,
however, in contradiction to the properties of M as an orthonormal matrix.
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Theorem 6: Let M be a (3/3) orthonormal matrix having exactly six zero entries. Then three of its non-
zero entries are in the set {-1, 1} and no two non-zero entries are on the same row and no two non-zero en-
tries are in the same column (this means that M = E).

Proof: Let at least two from three of the non-zero entries of Mbe on the same row (in the same column). It
is easy to see that then det(M) = Oand so Mis not orthonormal. The fact that three of the non-zero entries are
in the set{-1, 1} follows immediately from the equation MMT =E.

Theorem 7: A (3/3) orthonormal matrix M cannot have exactly two entries from the set {-1, 1}.

Proof: Let M has exactly two entries in the set {1, 1}. Then, by Theorem 3b), these entries are neither on
the same row nor in the same column. By striking out the rows and columns containing such entries, a (1/1)
orthonormal matrix is obtained. There are, however, exactly two such matrices — namely (1) and (-1). Thus,
M contains a third entry from the set {-1, 1}.

Theorem 8: Let M be a (3/3) orthonormal matrix. Then the number of its zero entries is in the set {0, 1, 4,

) 1% 3
Proof: 2 4 4
. V3 5 3v3 i L s .
a. Thematrix M= | - % "8 8§ has no zero entry. By direct calculation it can be verified that it is or-
3 3vi 1
4 8 8
thonormal.
1 V3
° 3 7
. 1 33 . L g .
b. The matrix M= | - 5 TIF I has one zero entry. By direct calculation it can be verified that it is
ACE T
2 i 4

orthonormal.

c. Let a matrix M have exactly two zero entries. These zero entries are neither on the same row nor in
the same column. If they were on the same row (in the same column), then the only non-zero entry on
this row (in this column) would be an element u of the set {-1, 1}. By Theorem 3b) then, M has at least four
Zero entries.

Let the zero entries of Mbe My, My, fori=k,j=11,j,k [ €{1,2,3}. Letr e {1,2, 3} - {j, [}. Then, since M s or-
thonormal, we have m, -m, = 0,which is in contradiction to the assumption. Thus M cannot have exactly
two non-zero entries.

d. Letthe Mhave exactly three zero entries. Then these zero entries must be on different rows and in diffe-
rent columns, which can be proved in much the same way as above and again, as above, it can be shown
that such a situation cannot occur.

1 0 0
V2 V2
e. Thematrix M=| O 5 5 has four zero entries. By direct calculation it can be verified that it is
V2 V2
O -7 7

orthonormal.

f. Letamatrix M have exactly five zero entries. Then two columns contain two zero entries each and the ab-
solute value of the remaining entry in these columns equals one. This means that M has two more non-
zero entries. By Theorem 3b), at least one of these must be equal one and thus M must have at least six
zero entries, which is a contradiction.

g. The unit (3/3) matrix is orthonormal and has six zero entries.

h. By Theorem 5, amatrix M cannot have more than six zero entries.

Definition 9: Let n > 2 be a natural number.

a. We denote by Xy (o) an (n/n) matrix (x,); , in which, for{p,q} € (1,2, ...,m}, p<q;x,=1forie{1,2,...,n} -
b 4 x,,=x,, = cosa, x, =sina, x, = -sina; and x, = 0 for the remaining index pairs, i.e. for (i,j) € {1,2, ...,
n?-{(1,1),(2,2), ..., (nn),(pq), (g p) We will call X3 (o) amatrix of a-rotation between axis g and axis p or
rotation matrix for short.
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b. Let Xy (@) be a matrix of a-rotation between axis g and axis p and r e {1, 2, ..., n} - {p, ¢}. If, in Xy (o),
the entry on row rand in column rfor one chosen ris replaced by the symbol ¢ , the resulting matrix will
be called an r-flop-enabling matrix of a-rotation between axis g and axis p and denoted X (o ¢).

Note: Putting ¢_= -1 will cause a change in the polarity of axis r. Putting ¢_= 1 means that the polarity of
axis r remains the same.
Example: Let n = 3. For a given fixed a, there are three matrices of a-rotation. Next we will only use the ma-

coso.  sina O 1 0 0
trices Xiz(cx)= -sina cosaa O andX;ys(cx)= 0 cosa sina |.
0 0 1 0 -sina. cosa

Note: Theorems 10 to 13 can be proved by direct computation.

Theorem 10: Each rotation matrix and each flop-enabling rotational matrix in which eithere =1 ore =-1
is orthonormal.

Theorem 11: Let, for a natural numbern > 2, Xy (@) be a matrix of a-rotation between axis g and axis p and
X1 (B) a matrix of B-rotation between axis q and axis p. Then both matrix Xy (o) - X (B) and matrix Xz (B) -
X7 (o) are matrices of (o + B)-rotation between axis g and axis p, that is, Xo (o) - X (B) =X (a+B) and X2 (B)-
X2 (o) = X2 o+ B).

Corollary 12: Let, for a natural number n > 2, X;ﬁ(a) be arotation matrix. Then the matrix X;q(—a) isama-
trix inverse tonyq(a).

Theorem 13: Let n = 3, X3 ,(9) be a matrix of 9-rotation between the third and second axes, X395 8,) be
a matrix of g-rotation between the second and first axes with a change in the polarity of the third axis if nec-
essary, and X3 5(a) be a matrix of a-rotation between the third and second axes, then X35(8) - X3 (05 €5) - X3 5(00)

CcOosQp coso.-sing sino-sing
has the form| - cos9-sing €0s8-cosa-cosp - &,5inY-sina €089-sina.-cose + &,5inJ-cosa
sin9-sing -sin8-cosa-cosp — £,c083-sina -sing-sino-cos - £,c089-cosa

Note: The above theorem is shown as a motivation to the selection of parameterization in the following
theorem.

Theorem 14: Let M be a (3/3) orthonormal matrix with all its entries are non-zero or containing a single
zero entry which is one of the entries m,, m,, m,, m,, and ¢ e {-1, 1}. Then there exists a triple

(0,9, ) € {(o, m) - {%} {(o, 2m) - {% n%}x{(o, 2m) - {% n%} such that

CcOsQ cosa.-sing sino-sing
M= | -cos3-singp c0s9-cosa-cose —e-sind-sino c0sY-sina-cose + €-sinJ-cosa
sinY-sing  -sinY-cosa-cose - €-cosY-sinat  -sinY-sina-cose - €:c0sJ-cosa
Proof: Let Mbe an arbitrary real orthonormal (3/3) matrix, M= (m,)},., with all its entries being non-zero or
only with the entry m,, being zero. Then each of the Mentries is in the interval (-1/1). The function f(x) = cosx
is an injection in (0, n) mapping it onto the interval (-1/1). Therefore, without loss of generality, an arbitrary

237 327 3

n
butfixed ¢ € (0, n) can be chosen assuming that m,, = cose. Since m,, =0, we have ¢ o

Further, m?, + m?, + m?, = 1 implies m2, + m?, = 1 - m?, = 1 - cos?p = sin’p. Hence m? = sin%p - m2 . The last
equation implies |m,,| < |sing|. Again, using the fact that f(x) = cosx is an injection in [0, n] mapping it onto
the interval [-1, 1] and choosing an arbitrary but fixed 9 € (0, n) without loss of generality, we can assume

thatm,, = -sing-cos9. The condition m,, = 0 implies 9 #--- Again, we can use the equation m?, + m?, + m2, =1

obtaining m? =1 -m? =1 - cos?p -sin%p-cos29 = sin’p-sin3. Hence |m, | < |sing-sin9|. The last equation can
be satisfied in two different ways. Either m,, < sing-sin$ or m,, < -sing-sin9. These two equations can be writ-

3
ten as m,, < sing-sing provided that the set of the possible values of 9 is extended to$ € (0, 2x) - {%, n% }

Now reasoning similar to that used for column one can also be applied to row one of the matrix M. This

yields m , <singcosa and m , < singsina for o € (0, 2n) —{%, n%ﬁ }

i — 1 2 2 2 _ 1 2 _ 2 2 _ in2 2
Denoting m,, = 4, we can use the equation m2, + m2, + m2, = 1 to obtain m2,=1-m?, - m2,=1 - sin?pcos’a -
a?. Hence either m,,=V1 -sin’p.cos?o. - a*> or m,, = -VI1 - sin’p.cos’a - a*. Thus m,, = ,V1 - sin’p.cos’a - a*
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where g, € {-1, 1}. By the same reasoning, we can use the equation m2, + m2, + m%, = 1 to obtain
m,, =¢&,V1 - sin’p.cos’9 - a?> where g, € {-1, 1}.

Let us now summarize the preceding reasoning in a matrix M. Denoting m,, = b we can write

COSQ sing-cosoa sine-sino
M= | -sing-cos9 a g,V1 - sin’p.cos?9 - a?
sing-sing g,V1 - sin’p.cos?o. - a2 b

The scalar product of the first two columns of M is zero. This leads to an equation sine-cose-coso -
a-sing-cosY +¢,5ing-sinYV1 - sin?.cos’a — 4% = 0 or to an equation sing-cose-coso. - a-sing-cosY = —¢,sing-sind
V1 - sin’p.cos’a - a®>. Squaring both sides of the equation yields sin*p-cos?p-cos’a + asin’p-cos*3 -
2asinp-cose-cosa.-cosY = sin%e-sin%9-(1 - sin%p-cos®a — a?).

Since sing = 0, the last equation can be reduced by sin?p, which yields cos’p-cos?a + a?-cos?3 -
2a-cos@-coso-cosd = sin?3-(1 - sin?p-cos’a - a?). Hence cos?¢-cos?a + a*-cos*3 — 24-cos@-coso-cosd — sin?3 +
sin?8-sinp-cos’a + a?-sin9 = 0. After some simplification then a? - 2a-cose-cosa-cos9 + (cos’p-cos?a - sin?9 +
sin%9-sin%p-cos’a) = 0.

Now let us view the last equation as a quadratic equation with the unknown a in
the form 4> - 24K + L = 0. Its solutions can be written as a=K+VEK:-L. We have

K- L = Veos?g.cos?a.cos?9 — (cos?p-cos?a — sin9 + sin®3-sinp-cos?a), hence K- L =
V-cos?p.cos?a..sin%3 + sin?Y - sin?9-sin%p-cos?a), which then vyields VK2-L = |sina-sing|. Thus,
we have a4 = cosg-cosa-cos - esino-sind where ¢ e {-1, 1}. Hence m,,=¢,VI-sinp.cos’a-a’ =
&,V1 - sin%p.cos?a - (cos¢-cosa-cosd — esina-sind)?and m,, = &, V{esina-cos9 + cosg-cosa-sing)?, which means
that m,, = +(esina.-cosY + cose-cosa-sing).

Substituting this result into the matrix again, we get

cos® sing-cosa sing-sina
M= | -sing-cosd €OSQ-cosa-cosY - esina-sind g,V1 - sin’p.cos’9 - a?
sing-sing  #(e-sina-cos9 + cose-cosa-sing) b

The scalar product of the first two columns of M is zero. This will give us the sign of m,, with m,, =
—C0S@-c0Sa.-cosY — g-sina-sin.
After substitution, matrix M will have the form

cosQ sing-cosa sine-sina
-sing-cosY cos@-cosa-cosd — esino-sing  g,V1 - sin’p.cos’9 — (cose-cosa-cos$ — esina-sing)? |.  Since
sing-sind —-c0osp-cosa-cosY - gsina-sing b

m,, =¢&,V1 - sin’p.cos’3 - (cose-cosa-cosY — esino.-sing)? we can write m,, =¢,V(ecosa-sing + cose-sina-cosy)?
and so m,, = £(ecosa-sing + cosg-sina-sin9).
After substitution, matrix M will have the form

CcosQ sing-cosa sing-sino
-sing-cosY COSQ-COSa-Cc0SY — esina-sind +(cos@-sina-cosY + gcosa-sing) |. We have
sine-sind —COS(P-COSaL-COSY — esina-sind b

b*> = 1 - sin®psin®a - (cos@-sina-cos9 + ecosa-sing)?, b* = (ecosa-cos - cose-sina-sing)? and hence b =
=t(cose-sina-sinY — ecosa.-cosY).

CcOosQ sine-cosa sine-sina
This meansthat M= | -sing-cos3 cos@-cosa-cos3 - g-sina-sind  +(cose-sina-cosy + g-sinJ-cosa)
sing-sind  —-cos@-cosa-cosY - e-sina-sind  +(cose-sina-sind + g-cosa.-cosY)

The equation
COsQ-sing-sinY - sing-cos3[+(cosp-sina-cosY + ecosa-sinY)] + sina-sind[+(cose-sina-sinY - ecosa-cosy)] =0

yields immediately

m,, = cosY-sina.-cose + &-sinY-cosa, m,, = -siny-sina.-cose + g-cosY-cosa.

The theorem is proved for the case of all the entries of M being non-zero or only entry m,,being zero. If
some of the entries m,,, m,,, m,, is zero, we can proceed in much the same way.

Note: Let M is the same matrix as in Theorem 14, then detM =¢.

Note: The assumption that only one of the entries m,,, m,,, m,,, m,, is zero is not substantial and the theo-
rem may be extended without change to all (3/3) orthonormal matrices with one zero entry. Using a special
choice of parameters, also all (3/3) orthonormal matrices that contain more than one zero entry can be writ-

ten in the form shown above. This parameter choice, however, is not unique in all cases.

m,,, m
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SUMMARY

The paper deals with the need to parameterize three-dimensional orthonormal matrices in terms of
linear calibration. The set of orthonormal matrices is parameterized with three continuous and one
discrete parameter. The meaning of the continuous parameters is obvious from the introduced con-
cept of a rotation matrix while the meaning of the discrete parameter is explained by the rotation ma-
trix with a change of axis polarity if necessary.

SOUHRN
Parametrizace ortonormalnich matic tfettho ¥adu pro linearni kalibraci

Préce fe3i potfebu parametrizace trojrozmé&rnych ortonormalnich matic z hlediska linedrni kali-
brace. Mnozina ortonormalnich matic je parametrizovéna tfemi spojitymi a jednim diskrétnim pa-
rametrem. Smysl jednotlivych spojitych parametrii je zfejmy ze zavedeného pojmu matice oto¢eni
avyznam diskrétniho parametru vysvétluje matice oto€eni s pfipadnou zmé&nou polarity osy.

ortonormadlni matice, parametrizace, matice oto¢eni, matice oto¢eni s pfipadnou zménou polarity
osy
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