
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS
SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ

XML as a format of expression of
Object-Oriented Petri Nets

P. Jedlička

Received: June 30, 2004

Abstract

Jedlička, P.: XML as a format of expression of Object-Oriented Petri Nets. Acta univ. agric. et silvic.
Mendel. Brun., 2004, LII, No. 6, pp. 45-54

A number of object-oriented (OO) variants have so far been devised for Petri Nets (PN). However, none
of these variants has ever been described using an open, independent format – such as XML. This artic-
le suggests several possibilities and advantages of such a description. The outlined XML language de-
finition for the description of object-oriented Petri Nets (OOPN) is based on XMI (description of UML
object-oriented models), SOX (simple description of general OO systems) and PNML (an XML-based
language used for the description of structured and modular PN). For OOPN, the XML form of descrip-
tion represents a standard format for storing as well as for transfer between various OOPN-processing
(analysis, simulation, ...) tools.

Petri Nets, Object-Orientation, XML, portability

Ročník LII	 4	 Číslo 6, 2004

	 45

Petri Nets (PN) represent a popular formalism for
discrete parallel systems modelling. The simple prin-
ciple upon which they are based allows comprehen-
sible graphic representation, simulation and analysis.
An analysis of systems modelled using PN makes it
possible to reveal a number of their characteristic fea-
tures already in the early phases of the design, and
thus to avoid problems that could arise later.

However, primitive PN variants, such as Condition-
Event PN or Place-Transition PN (Peterson, 1981),
are practically unusable for modelling more com-
plex systems. This is why PN, during the many years
of their development, were adapted to the needs and
character of the modelled systems. Several variants of
High-Level Petri Nets (HLPN) (Jensen, Rozenberg,
1991) were devised. In the first variant, referred to
as “predicate Petri Nets”, tokens represent particu-
lar data, which can be tested and modified by the net
transitions. Coloured PN (Jensen, 1991) represent an-
other variant; they made it possible to bind net tokens
with datatype values. Hierarchical PN enabled model-

ling large systems; their characteristic features make
them similar to structured programming. One of the
latest trends in PN development is object orientation.
Object-oriented Petri Nets (OOPN) (Janoušek, 1998;
Martiník, 1999) reflect the current trend towards us-
ing an object-oriented approach in designing and im-
plementing (not only) software systems. This is why
OOPN are often described using a particular object-
oriented programming language through which the
modelled system is implemented. However, there
are programming languages created specifically and
exclusively for simulating OOPN. An example is the
PNtalk language (Janoušek, 1995), which is based on
Smalltalk. Other possibilities include graphic repre-
sentation of PN, and description of PN using mathe-
matical methods. Only one of the solutions mentioned
above is practical enough to be used for processing
OOPN (e.g. simulation) by means of computer tech-
nology: the use of an OO programming language.
However, neither this solution is suitable for a general
representation of OOPN. General and platform-inde-

46	 P. Jedlička

pendent representation of OOPN requires the use of
an open and standardized format, the search for which
is the aim of this article.

MATERIAL AND METHODS
Object model notation

The object-oriented (OO) approach to the analy-
sis and design of information systems (IS) has gone
through many years of development, and its methodolo-
gy is quite sophisticated already. However, the nota-
tion of the OO model took a number of different ways
of development, and it had not been until recently that
consensus was reached in this area. During the 1990s
there appeared several different OO methodologies
that were coupled with their own notation sets. The
three most popular methods were OMT (Rumbaugh),
OOAD (Booch) and OOSE (Jacobson). Each of these
methods had its own purpose and focus. OMT laid
stress on analysis, OOAD on design and OOSE on the
analysis of OO system behaviour. Around 1995, the
UML language (OMG: UML…, 2004) was created
by unifying the Booch and Rumbaugh notations and
object-oriented notations devised by other methodolo-
gists. It is a visual modelling language for the crea-
tion and interchange of OO models. It is independent
of any particular programming language or process
of development and analysis. For the sake of an in-
dependent and open description of the UML model,
an XML-based language called XMI (XML Metadata
Interchange) (OMG: XML…, 2004) was created. It
is maintained by the OMG group1. At present, XMI
is the basic de facto standard for exchanging UML
models between various modelling tools and, at the
same time, it is one of the means of their persistent
representation. The basic UML components are rep-
resented in XMI in the following way:

•	 Each metamodel of a class is decomposed into three
parts: properties, associations and composition. En-
tities are declared for each metamodel in such a way
that the name begins with the name of the class and
ends with “Properties” for properties, “Associati-
ons” for associations, and “Compositions” for the
composition of the class. The properties entity con-
tains a list of XML elements that correspond with
metamodel attributes; the associations entity conta-
ins XML elements that represent the roles of asso-
ciated entities; and the composition contains XML
elements that represent the roles of an association in
the aggregation.

•	 Currently, the inheritance mechanism in XML is

not completely resolved. This is why XMI specifies
inheritance as “copy-down inheritance”. It means
that the child will copy the attributes and composi-
tion of the parent.

•	 In order to represent the metamodel attributes,
XML elements and attributes are used. If the attri-
bute in the metamodel is of the list or the primitive
type, it is represented in XMI as an XML attribute.
In other cases a separate element <XMI.field> is
used.

•	 Each association2 is represented by an XML ele-
ment and XML attributes. The element bears the
name of the association, and entities taking part in
the association are listed as an attribute (therefore,
n-ary associations can be displayed, too).

Interchange format for Petri Nets
As it was already mentioned at the beginning of this

article, the most common ways of describing PN are:
graphic representation, a mathematical model, and a
program in an OO programming language. Howev-
er, for transfer between applications that process PN
models, and also for permanent storage of PN in an
electronic form, the use of a different format is neces-
sary. This format should be open, platform-independ-
ent and, if possible, human-readable. XML is such a
format, and it is not a coincidence that some have al-
ready tried to use it for the description of Petri Nets.
What seems to be the most advanced solution is the
PNML language (Petri Net Markup Language), cre-
ated by the Department of Computer Science at Hum-
boldt-Universität in Berlin (Weber, 2004).

PNML
The PNML language is defined using the progres-

sive meta-language RELAX NG. The basic version
(basic PNML) makes it possible to describe standard
P/T Petri Nets; structured PNML extends the lan-
guage’s expressive capabilities to cover the descrip-
tion of structured Petri Nets, and modular PNML al-
lows describing the modularity of PN. A module is
an independent net with an interface through which
it can be interconnected with other nets and modules.
Apart from the logical structure of the net, PNML de-
scribes also the physical layout of the PN graph com-
ponents. It uses the Cartesian coordinate system.

The definition of PNML is general enough to be
used for various PN variants without limitations. This
is why it can be utilized as the basis of an OOPN de-
scription language.

1 Object Management Group, http://www.omg.org
2 An association expresses the fact that objects are in a mutual relation. Associations between two objects can be unidirec-
tional or bidirectional.

	 XML as a format of expression of Object-Oriented Petri Nets	 47

Choosing a language suitable for the description
of XML schemas

An XML-based language can be defined in a
number of ways. The oldest language used for the de-
scription of XML document structure is DTD (Docu-
ment Type Definition) (W3C: Extensible…, 2004),
which has its origins in the SGML language. Today,
the use of DTD has probably one advantage only – the
widest application support. Disadvantages are, on the
other hand, numerous: DTD does not support name-
space, does not allow defining element and attribute
datatypes, and uses a syntax different from everything
that is used in the world of XML. All these drawbacks
are overcome in the XML Schema language (W3C
XML Schema – WXS) (W3C: XML Schema, 2004),
adopted in May 2001 as a W3C recommendation. Ta-
ble I shows some of the properties supported in the
WXS language. The comparison includes also the
RELAX NG (Clark, 2003) language, which was cre-
ated by experts in reaction to the complexity and ex-
tensiveness of WXS. The comparison makes it clear
that WXS has the widest range of features. This is one
of the reasons why it will be used for the sake of de-
fining an OOPN description language. Another argu-
ment in favour of WXS is the fact that XML is built
on object-oriented principles, and only WXS can put
a number of these principles in use. For the purpose
of designing schemas there are a number of features
available that are very similar to features known from
object-oriented languages. The possibility to derive
new types from the existing ones is nothing else than
inheritance. This derivation can be used for simple as
well as for complex types. Other OO-inspired fea-
tures include substitution groups, abstract datatypes,
and the possibility to block further inheritance from
a certain datatype. Another argument supporting the
choice of WXS is that it is well supported by both
commercial and non-commercial software.

I: Capabilities of languages as regards the descrip-
tion of XML document schemas

Supported feature DTD XML
Schema

Relax
NG

XML format no yes yes
PSVI3 yes yes no
own datatypes no yes no
namespaces no yes yes
referential integrity yes yes no

As it has already been mentioned, when defining
an XML-based language for the description of OOPN
we will draw upon PNML. In particular, structured
PNML seems to be the most suitable initial form. It is
because object-oriented PN are also based on struc-
tured PN. The main difference between the two types
of PN is that structured PN have a static structure
while in OOPN the individual subnets can be dynami-
cally created and deleted because they represent the
system’s class instances (objects) that are created or
deleted. We will also make use of the tried-and-tested
approaches of XMI, which is specifically designed
for object-oriented systems modelling. Another lan-
guage that cannot go unmentioned is SOX (Schema
for Object-oriented XML) (W3C: Schema…, 2004).
SOX allows using inheritance and polymorphism
in schemas. The individual parts of schemas can be
shared and reused. Despite being oriented specifically
towards the description of object models, SOX is not
suitable for our purposes due to its over-simplicity.
This, however, does not mean that we will not use
some of its principles.

RESULTS
This part of the article focuses on the components

and principles of OOPN, for which a suitable form
of XML representation has to be chosen. There are
many OOPN conceptions in the world, of which at
least two originate in the Czech Republic. Accord-
ing to available sources, no XML-based language has
been defined for the description of OOPN until now.
Therefore, the following steps will be chosen so that
the expressive capabilities of the proposed language
allow using it for various OOPN specifications.

The basic conception of PN is quite simple. A PN
is composed of two types of node – places and transi-
tions – and of directed arcs. Arcs interconnect places
and transitions. Places can contain tokens, which can
be distinguishable according to the type of PN and
whose number differs depending on transition events.
This structure and semantics is common to all PN
types and levels. There are differences especially as
regards the understanding of places and tokens, the
character of transition functions, and the structure
and modularity of the whole net. Taking into account
the limited scope of this article, it is not possible to
describe the entire PN development branch, from
the basic types to OOPN. Therefore, we will focus
solely on OOPN, and in particular on their features
that have not been described by the structured PNML
language.

3 Post Schema Validation Infoset, a typed document that results from assigning datatypes based on validation against a
schema. It is used, for example, in query languages (XQuery), which need to know the type of data in the individual ele-
ments and attributes.

48	 P. Jedlička

OOPN structure and components
Just like any other object-oriented system, OOPN

works with classes and their instances – objects. Both
classes and objects consist of data items (attributes)
and methods. All classes in a system exist throughout
its existence while objects are dynamically created or
deleted. As OOPN applies inheritance, some classes
are descendants of other classes. Further, there are ab-
stract classes that can be inherited from but it is not
possible to instantiate objects. Final classes, on the
other hand, are meant to be instantiated, and cannot
be used for inheritance. Other supported properties
are encapsulation and polymorphism.

A class and an object in OOPN are represented by a
separate page of the net. Attributes are represented by
tokens. Each token is assigned:

•	 an identifier;
•	 a datatype – either primitive, or an object reference;
•	 visibility – one of the set {public, protected, priva-

te};
•	 value.

A place is a node in the net; it contains tokens and
is connected with transitions by input and output arcs.
Apart from tokens, a place is assigned also the initial
marking, i.e. the initial values of tokens contained in
the place.

Each method of a class or object is represented by a
separate subpage of a class or object page. The main
properties of a method’s subpage include:

•	 an identifier;

•	 a visibility attribute – one of the set {public, protec-
ted, private};

•	 type attribute – one of the set {normal, virtual, con-
structor, destructor};

•	 input and output interface constituted by an input
and an output place.

An arc is described by an arc function consisting of
an organized set of expressions. All expressions of the
input arc of the transition are of the boolean type;
expressions of the output arc of the transition corre-
spond (in number and type) to the output place. Some
of the arcs are inhibitory.

The function of a transition in OOPN is to perform
an atomic operation, to create a new object, or to in-
voke a method of an existing object.

Expressing OOPN components and principles in
XML

We will define our OOPN-describing XML lan-
guage from the bottom up, i.e. start with the basic
OOPN elements from which we will, step by step,
compose the entire net.

A token is an elementary component of PN. Tokens
are located in places, where they are manipulated via
transitions. In addition to their value, tokens have
some other properties; this is why they will be repre-
sented through elements in XML. For the purpose of
describing a token’s identifier, visibility and datatype,
element attributes will suffice. The token value can
be expressed by element content. Therefore, the token
as a whole can be described in WXS in the follow-
ing way:

<element name=“token“>
<complexType>
	 <element name=“value“ type=“anySimpleType“/>
		 <attribute name=“id“ type=“ID“ use=“required“/>
		 <attribute name=“visibility“ type=“visibilityType“ use=“required“/>
		 <attribute name=“type“ type=“string“ use=“required“/>
	 </complexType>
</element>

The following is a definition of the visibilityType datatype:

<simpleType name=“visibilityType“>
	 <restriction base=“string“>
		 <enumeration value=“public“/>
		 <enumeration value=“protected“/>
		 <enumeration value=“private“/>
	 </restriction>
</simpleType>

	 XML as a format of expression of Object-Oriented Petri Nets	 49

The other types used (anySimpleType, ID and string) are built-in (predefined) types of the XML
language.

A place, being a container of tokens with initial marking, can be defined as follows:

<element name=“place“>
	 <complexType>
		 <element ref=“token“ maxOccurs=“unbounded“/>
		 <attribute name=“id“ type=“ID“ use=“required“/>
	 </complexType>
</element>

An example of describing a place using the above-mentioned WXS definitions:

<place id=“p1“>
	 <token id=“jméno“ visibility=“protected“ type=“string“>
		 <value>Karel</value>
	 </token>
	 <token id=“věk“ visibility=“private“ type=“unsignedByte“>
		 <value>28</value>
	 </token>
</place>

For the purpose of defining a transition the following structure can be used:

<element name=“transition“>
	 <complexType>
		 <choice>
			 <element name=“function“ type=“string“/>
			 <element name=“new“ type=“IDREF“/>
			 <element name=“call“ type=“IDREF“/>
		 </choice>
		 <attribute name=“id“ type=“ID“ use=“required“/>
	 </complexType>
</element>

For the description of an arc we could use the following definition:

<element name=“arc“>
	 <complexType>
		 <element name=“expr“ type=“string“ maxOccurs=”unbounded”/>
		 <attribute name=“id“ type=“ID“ use=“required“/>
		 <attribute name=“type“ type=“arcType“ use=“required“/>
		 <attribute name=“inhib“ type=“boolean“ use=“required“/>
		 <attribute name=“source“ type=“IDREF“ use=“required“/>
		 <attribute name=“target“ type=“IDREF“ use=“required“/>
	 </complexType>
</element>

<simpleType name=“arcType“>
	 <restriction base=“string“>
		 <enumeration value=“pt“/>
		 <enumeration value=“tp“/>
	 </restriction>
</simpleType>

50	 P. Jedlička

<element name=“method“>
	 <complexType>
		 <sequence>
			 <element name=“interface“>
				 <complexType>
					 <sequence>
						 <element name=“inputPlace“>
							 <complexType>
								 <element ref=“token“ maxOccurs=“unbounded“/>
								 <attribute name=“id“ type=“ID“ use=“required“/>
							 </complexType>
						 </element>
						 <element name=“outputPlace“>
							 <complexType>
								 <element ref=“token“ maxOccurs=“unbounded“/>
								 <attribute name=“id“ type=“ID“ use=“required“/>
							 </complexType>
						 </element>
					 </sequence>
				 </complexType>
			 </element>
			 <element ref=“place“ minOccurs=“0“ maxOccurs=“unbounded“/>
			 <element ref=“arc“ minOccurs=“1“ maxOccurs=“unbounded“/>
			 <element ref=“transition“ maxOccurs=“unbounded“/>
		 </sequence>
		 <attribute name=“id“ type=“ID“ use=“required“/>
		 <attribute name=“visibility“ type=“visibilityType“ use=“required“/>
		 <attribute name=“type“ type=“methodType“ use=“required“/>
	 </complexType>
</element>

<simpleType name=“methodType“>
	 <restriction base=“string“>
		 <enumeration value=“normal“/>
		 <enumeration value=“virtual“/>
		 <enumeration value=“constructor“/>
		 <enumeration value=“destructor“/>
	 </restriction>
</simpleType>

The following is a definition of an object. Object contains an identifier (ID), methods (transitions, min. 1,
max. unbounded), arcs and attributes (1 place).

<element name=“object“>
	 <complexType>
		 <sequence>
			 <element ref=“transition“ maxOccurs=“unbounded“/>
			 <element ref=“arc“ minOccurs=“2“ maxOccurs=“unbounded“/>
			 <element ref=“place“/>
		 </sequence>
		 <attribute name=“id“ type=“ID“ use=“required“/>
	 </complexType>
</element>

Now that we have described all the elementary
components of OOPN we can proceed to define the
OOPN method (of class or object), as defined by
Martiník (1999). The method, in OOPN expression,
consists of following elements: identifier (ID), visibil-
ity attribute, type attribute (normal, virtual, construc-

tor, destructor), interface (one input and one output
place), inner places (optional – for eventual artificial
variables) and transitions. Since XML doesn’t support
inheritance of elements, we have to define input and
output places of the method (i.e. its interface) repeat-
edly, according to the definition of common places.

	 XML as a format of expression of Object-Oriented Petri Nets	 51

<element name=“class“>
	 <complexType>
		 <sequence>
			 <element ref=“transition“ maxOccurs=“unbounded“/>
			 <element ref=“arc“ minOccurs=“2“ maxOccurs=“unbounded“/>
			 <element ref=“place“/>
		 </sequence>
		 <attribute name=“id“ type=“ID“ use=“required“/>
		 <attribute name=“visibility“ type=“visibilityType“ use=“required“/>
		 <attribute name=“type“ type=“classType“ use=“required“/>
		 <attribute name=“superclass“ type=“IDREF“/>
	 </complexType>
</element>

<simpleType name=“classType“>
	 <restriction base=“string“>
		 <enumeration value=“normal“/>
		 <enumeration value=“abstract“/>
		 <enumeration value=“final“/>
	 </restriction>
</simpleType>

At the end we show a XML definition of a class.
Class consists of an identifier (ID), visibility attribute,
type attribute (normal, abstract, final), reference to

the superclass (optional), methods (transitions, min.
1, max. unbounded), arcs and attributes (1 place).

DISCUSSION
The existence of various Petri Net types results from

efforts to increase their modelling and description ca-
pabilities for a certain type of system that is studied.
Taking into account the popularity of the object-ori-
ented approach, especially in the sphere of software
design, it is not surprising that a number of object-
oriented Petri Net design proposals have been made
recently. However, these attempts have only got as
far as to describe OOPN using mathematical metho-
ds or a programming language. There is a need for a
specialized yet open and independent form of OOPN
description, which would be suitable for persistent
storage and transfer of OOPN models between vari-
ous applications.

This article shows the possibilities of creating
a custom-made XML-based language describing
OOPN. The proposed solution draws upon certain
principles of XMI, SOX and PNML; however, with
regard to the given purpose it is the author’s own so-
lution. Due to the limited scope it was not possible to
mention all the possibilities the XML language offers
for OOPN modelling. We have merely suggested how
to describe the individual Petri Net components (to-

kens, places, arcs, transitions) and the entire subnets
(classes, objects, methods). The solution proposal
nevertheless covers all traditional properties of ob-
ject-oriented systems, i.e. inheritance, encapsulation
and polymorphism. Further development of the lan-
guage is expected to bring, in particular, refinement
of its expressive capabilities in the sphere of OOPN
semantics. The new capabilities could include:

•	 using the unique element and the XPath query
language, uniqueness of values can be ensured, e.g.
for object identifiers within the entire net, or for to-
kens within a place or a page of the net;

•	 by restricting the built-in datatypes or by means of
regular expressions, element and attribute datatypes
can be restricted;

•	 using XML’s implicit datatypes ID and IDREF,
referential integrity can be defined.

The above-mentioned XML properties clearly sug-
gest that the proposed solution is suitable for the de-
scription of object-oriented Petri Nets. The author of
the article will, therefore, make efforts to further de-
velop the language.

52	 P. Jedlička

SUMMARY
The aim of the article was to evaluate the possibilities of using XML as a basis for creating an open
format for the description of object-oriented Petri Nets (OOPN). We have suggested how to express
the basic OOPN components as well as how to implement the three cornerstones of the object-oriented
approach – inheritance, encapsulation and polymorphism. Certain partial principles have been derived
from existing languages (XMI, SOX, PNML), others had to be newly modelled using XML features.
Our efforts are focused on the creation of a language that would be, to the greatest extent possible, able
to describe the existing OOPN conceptions; at the same time, the language should be backwards com-
patible, i.e. capable of describing lower-level Petri Nets.

SOUHRN

XML jako formát vyjádření objektových Petriho sítí
Petriho sítě se od doby svého vzniku dočkaly mnoha variant a rozšíření. Nevyhnul se jim ani v sou-
časnosti moderní objektově orientovaný (OO) přístup. Dosud vytvořené koncepce objektových Petriho
sítí (Object-Oriented Petri Nets – OOPN) však zatím nedisponují otevřeným a nezávislým formátem
vyjádření, jaký poskytuje například jazyk XML. Ukazuje se, že pomocí XML je možné popsat nejen
základní komponenty OOPN, ale lze také postihnout všechny tři pilíře objektově orientovaného přístu-
pu – dědičnost, zapouzdřenost a polymorfismus. Nastíněná definice XML jazyka pro popis OOPN stojí
zčásti na základech jazyků XMI (popis objektových modelů UML), SOX (jednoduchý popis obecných
OO systémů) a PNML (jazyk na bázi XML pro popis predikátových, strukturovaných a modulárních
Petriho sítí), jako speciální XML jazyk pro vyjádření OOPN je však podle dostupných zdrojů zatím po-
kusem prvním a jediným.
XML forma vyjádření představuje pro OOPN standardní formát pro uložení i převod mezi nástroji pro
jejich zpracování (analýzu, simulaci, …). Jedná se o formát obecně rozšířený, platformově nezávislý,
snadno automatizovaně zpracovatelný a (v případě potřeby) čitelný pro člověka. Veškerá zde popsa-
ná snaha směřuje k vytvoření XML jazyka, který by byl co nejvyšší měrou schopen postihnout různé
existující koncepce OOPN, současně by měl být zpětně kompatibilní, tedy schopný popsat Petriho sítě
nižších úrovní.

Petriho sítě, objektová orientace, XML, přenositelnost

REFERENCES

CLARK, J.: RELAX NG home page. [online] Ver.
2.0 Last upd. 2003-09-24. [cit. 2004-06-26]. URL:
<http://www.relaxng.org/>.

JANOUŠEK, V.: Modelování objektů Petriho sítěmi.
1. vyd. Brno: VUT, 1998. 137 p. Doctoral thesis.

JANOUŠEK, P.: PNtalk: Object Orientation in Petri
Nets. In Proceedings of European Simulation Mul-
ticonference ’95, pages 196–200. Prague: Czech
Technical University, 1995. ISBN 1-56555-080-3

JENSEN, K.: Coloured Petri nets : basic concepts,
analysis methods and practical use. 1st ed. Berlin;
New York; Paris: Springer, 1991. 234 p. ISBN 3-
540-55597-8.

JENSEN, K., ROZENBERG, G.: High-level Petri
nets: theory and application. 1st ed. Berlin; New
York; Paris: Springer, 1991. 724 p. ISBN 3-540-
54125-X.

MARTINÍK, I.: Metodologie tvorby objektov��������ě�������-orien-

tovaných programových systémů s využitím teorie
objektových Petriho sítí. 1. vyd. Ostrava: VŠB-TU,
1999. 218 p. Doctoral thesis.

OMG – Object Management Group XML Metada-
ta Interchange (XMI) Specification. [online] Ver.
2.0 ©1997–2004. [cit. 2004-06-25]. URL: <http:
//www.omg.org/docs/formal/03-05-02.pdf>.

OMG – Object Management Group UML™ Re-
source Page [online]. ©1997–2004. [cit. 2004-06-
25]. URL: <http://www.uml.org/>.

PETERSON, J. L.: Petri Net Theory and the Modeling
of Systems. 1st ed. Upper Saddle River, NJ, USA:
Prentice Hall, 1981. 290 p. ISBN 0136619835.

W3C Extensible Markup Language (XML) 1.0 (Third
Edition). [online]. ©1994–2004. [cit. 2004-06-26].
URL: <http://www.w3.org/TR/REC-xml/>.

W3C Schema for Object-Oriented XML 2.0. [online]
Ver. 2.0 ©1994–2004. [cit. 2004-06-26]. URL:
<http://www.w3.org/TR/NOTE-SOX/>.

W3C XML Schema. [online]. ©1994–2004. [cit.

	 XML as a format of expression of Object-Oriented Petri Nets	 53

2004-06-26]. URL: <http://www.w3.org/XML/
Schema>.

WEBER, M.: Petri Net Markup Language [online] [cit.

2004-06-26]. URL: <http://www.informatik.hu-
berlin.de/top/pnml/about.html>.

Address

Ing. Petr Jedlička, Ústav informatiky, Mendelova zemědělská a lesnická univerzita v Brně, Zemědělská 1,
613 00 Brno, Česká republika

54	

