COrporate performance indicators for agriculture and food processing sector

J. Hřebíček, O. Popelka, M. Štencl, O. Trenz

Received: April 24, 2012

Abstract

The research project: “Construction of Methods for Multi-factorial Assessment of Company Complex Performance in Selected Sectors”, solved by author team, is introduced. Current trends of corporate performance evaluation (i.e. measurement of environmental, social, economic and governance (ESG) performance) and corporate sustainable reporting are discussed in the paper focused to agriculture and food processing sector. The relationship between environmental and sustainability indicators and corporate sustainability reporting is an important issue; and the development of advanced methods to identify key performance indicators for ESG performance is discussed here along with the possibility of the utilization of information and communication technology and XBRL taxonomy evaluating applications for the creation of business performance.

1 INTRODUCTION

The research team of the Faculty of Business and Management (FBM) of Brno University of Technology (BUT) and the Faculty of Business and Economics (FBE) of Mendel University in Brno (MENDELU) started work on the project No. P403/11/2085 “Construction of Methods for Multi-factorial Assessment of Company Complex Performance in Selected Sectors” in January 2011. The project is funded by the Grant Agency of the Czech Republic. The main objectives of the research of this project have been specified by their six partial research targets solved in 2011–2014, described by (Hřebíček et al., 2011, 2011a) and (Chvátalová, Kocmanová, Dočekalová, 2011).

The development of research in the area of corporate performance evaluation and corporate sustainability reporting in the Czech Republic was described by Hřebíček and Soukopová (2008), Hřebíček et al. (2009, 2011), Hřebíček, Soukopová and Kutová (2010), Chvátalová, Kocmanová and Dočekalová (2011), Kocmanová et al. (2011), Kocmanová, Hornugová and Klímková (2010) and Ritschelová et al. (2009). These papers reflect the overall global world trends of Global Reporting Initiative (G3.1, 2011), (Bassen, Kovacs, 2008), (Schaltegger, Wagner, 2006).

Usually, environmental, economical and social corporate data and information are being monitored, codified, registered and aggregated into Key Performance Indicators (KPIs) (Bassen, Kovacs, 2008), (DVFA, 2008), (Garz, Schnella, Frank, 2010), (Hřebíček, Soukopová, Kutová, 2010b), (Hřebíček et al., 2011a). This fact indirectly indicates that in the case of such needs the organization is able to aggregate these data and incorporate it into the corporate sustainability or environmental report, (Carroll, 1999), (Ritschelová et al., 2009), (Hodinka et al., 2012).

We have analyzed corporate performance and ESG factors in chosen companies of the agriculture and food processing sector which have implemented and certified integrated management system...
standards), i.e. quality (ISO 9000), environmental (ISO 14000) and occupational health and safety (ISO 18000) management systems.

The corporate performance in these specific economic activities would thus be defined by the integrated achievement of ESG performance measures. The sustainability performance is, however, often understood as performance in environmental, social and economic/financial terms, thus excluding governance performance (Schaltegger, Wagner, 2006). However, we will consider also the corporate governance like (Bhojraj, Sengupta, 2003), (Kocmanová et al., 2011).

In the paper we summarize last results of project No. P403/11/2085 of the analysis of ESG aspects of corporate performance evaluation, indicators and reporting issued by the Global Reporting Initiative (GRI) which provides Sector Supplement for all reporting organizations in the food processing sector (Food Processing, 2012) and agri-environmental policy measures and indicators which have been implemented in the European Union (EU).

Our analyses of possibilities of corporate performance measurements in chosen organizations of the agriculture and food processing sector by means KPIs were based on analyses of previous findings (Hřebíček et al., 2011, 2011a), (Chvátalová, Kocmanová, Dočekalová, 2011), (Kocmanová, Hornugová, Klimková, 2010) and their results will be discussed also in the paper.

2 New approach of corporate reporting

In this chapter we introduce conclusions of our analysis of the state-of-the-art of economic, environmental, social and governance aspects of corporate performance of the agriculture and food processing sector, where we focused on the new approach of GRI reporting developed with other organizations on common approaches to corporate performance and reporting (Hřebíček et al., 2011a), (Hodínka et al., 2012).

We considered and analysed the EU legislation, i.e. Common Agriculture Policies (CAP) including the reporting needs of other EU policies that relate to Agri-Environment Indicators (AEI(s)) and require the collection of related data.

The development of AEIs is a long-term project for monitoring the integration of environmental concerns into the CAP, proposed by the European Commission (EC) on 15 September 2006 in COM (2006) 508 final “Development of agri-environmental indicators for monitoring the integration of environmental concerns into the common agricultural policy”. The European Commission adopted 28 AEIs to assess the interaction between the CAP and the environment. We took into account also the Communication COM (2000) 20 final “Indicators for the integration of environmental concerns into the common agricultural policy”. In these Communications, the indicators are identified according to the DPSIR (Driving forces – Pressures and benefits – State/Impact – Responses) analytical framework and cover the following four categories:

1. Farm management practices.
2. Agricultural production systems.
3. Pressures and risks to the environment.
4. The state of natural resources.

2.1 Current trends in corporate performance evaluation and reporting

The Global Reporting Initiative (GRI) is a very important network-based organization that produces a comprehensive sustainability reporting framework that is widely used around the world. The GRI has pioneered the development of the world’s most widely used sustainability reporting framework in 2000 and is committed to its continuous improvement and application worldwide. The GRI drives sustainability reporting by all organizations. It produces the world’s most comprehensive Sustainability Reporting Framework (Sustainability Reporting Framework, 2012) which is the family of reporting guidance materials provided by GRI.

Corporate sustainability reports based on the GRI Framework can be used to demonstrate an organizational commitment to sustainable development, to compare organizational performance over time, and to measure organizational performance with respect to laws, norms, standards and voluntary initiatives.

GRI’s Framework consists of the Sustainability Reporting Guidelines, Sector Guidelines, National Annexes, and the Boundary and Technical Protocols (G3 Guidelines, 2006). The GRI promotes a standardized approach to reporting to stimulate demand for information on sustainability — benefitting both reporting organizations and report users.

In March 2011, the GRI released the G3.1 Guidelines (G3.1 Guidelines, 2011), an update and completion of the G3 Guidelines from 2006, which consist of two parts.

Part 1 features guidance on how to report. Part 2 features guidance on what should be reported, in the form of Disclosures on Management Approach (DMA) and Performance Indicators (PI), which are organized into categories: Economic, Environmental and Social. The Social category is broken down further by Labour, Human Rights, Society and Product Responsibility subcategories. Each category
includes a DMA and a corresponding set of Core and Additional Performance Indicators.

Core Performance Indicators (CPI) have been developed through GRI's multi-stakeholder processes, which are intended to identify generally applicable PIIs and are assumed to be material for most organizations. An organization should report on CPIIs unless they are deemed not material on the basis of the GRI Reporting Principles. Further we will take into account that CPIIs can be in compliance with KPIS.

Additional Performance Indicators (API) represent emerging practice or address topics that may be material for some organizations, but are not material for others. Further we will not take into account APIs and try to identify only CPIIs respectively KPIS.

The DMA should provide a brief overview of the organization's management approach to the Aspects defined under each Indicator Category in order to set the context for performance information. The organization can structure its DMA to cover the full range of Aspects under a given Category or group its responses on the Aspects differently. However, the DMA should address all of the Aspects associated with each category regardless of the format or grouping.

GRI PIIs are first organized by a general sustainability Category (economic, environmental, social: labour; human rights; society; product responsibility), and then they are further arranged under Aspect headings which more specifically reflect the issue each indicator is designed to measure.

Although the G3.1 Guidelines has served as an essential and very useful tools in improving the standardization of organization's reporting in many sectors, organizations continue to have differing degrees of compliance with the G3.1 Guidelines and sometimes also differing views on the best tools to apply these standards to their reporting.

The integration of financial performance within environmental, social and governance performance reflects a growing desire by stakeholders for more information on a broader range of issues. To be comparable across all organizations, and thus useful for mainstream investment analyses, it is important that financial, environmental, social and governance (ESG) data are transformed into consistent units and presented in a balanced and coherent manner in KPIS indicators (Garz, Schnella, Frank, 2010).

G4 Guidelines is coming GRI's fourth generation of Sustainability Reporting Guidelines and is now in development. The main focus of G4 Guidelines is (G4 Development, 2012):

1. a general revision to improve DMA and PIIs technical definitions;
2. an extra effort to harmonize with other relevant international reporting guidance;
3. an improvement of considerably guidance around the definition of what is material (from different perspectives);
4. a re-design of the G4 Guidelines format (by separating “standard like” requests from guidance, making it web based, offering templates, linking it to technology solutions with using XBRL taxonomy).

The launch of the fourth generation of G4 Guidelines is planned for 2013. They will be developed using the international multi-stakeholder consultation process. Open Public Comment Periods, diverse expert Working Groups and GRI’s approval procedures will ensure that G4’s guidance will be in consensus based and reflects the broadest possible stakeholder input.

2.2 Guidelines for Agriculture and Food Processing Sector

The Food Processing Sector Supplement (FPSS) (Food Processing, 2012) provides organizations in this sector with a tailored version of GRI’s Reporting Guidelines. It includes the original Guidelines (GRI G3 Guidelines, 2006), (GRI 3.1 Guidelines, 2011), which set out the Reporting Principles, DMA and PIIs for economic, environmental and social issues.

The FPSS is intended for all companies in the Food Processing sector. This includes all companies that are engaged in processing food, as well as food commodity trading related to food processing and fish processing, and beverage companies.

Companies that produce alcohol, tobacco and timber, food retailers and companies that deliver inputs like pesticides and fertilizers to farmers may be able to use parts of the Supplement content but the document was not specifically designed for their use. The sector reporting guidance focuses on companies in codes 10 and 11.07 (non alcoholic beverages) of the NACE coding (NACE, 2011), excluding 10.9 (feed industry).

The FPSS guidance and the indicators included are not aimed at businesses whose principle occupation are agriculture sector, which does, however, have many impacts on a large range of food processing sustainability issues and are relevant for all links in the food production chain. In this regard, the FPSS does include activities by the food industry designed to make food production chains (including agriculture) more sustainable with respect to environmental, social and economic aspects. However, we added to our proposal of Agriculture and Food processing sector PIIs focuses on companies in codes 01 (Agriculture) of NACE coding, excluding 01.7 (hunting, trapping and related service activities).

https://www.globalreporting.org/reporting/latest-guidelines/g4-developments/Pages/default.aspx
How will we construct KPIs for the Agriculture sector? Firstly, we took into account EU and UN policies (Bečvářová, 2011). There are a range of Agri-Environment related policies operating within the EU. These policies collect data that may complement the needs of the Agri-Environmental Indicators, or conversely may benefit from data collection strategies developed to meet the needs of the AEsIs. Policies that are covered by the task are:

1. United Nations Framework Convention on Climate Change (UNFCCC) – Land-use, Land-use Change and Forestry (LULUCF) (UNFCCC sector);
2. Rural Development Policy (RDP);
3. Water Framework Directive (WFD);
4. Nitrates Directive (ND);
5. National Emissions Ceiling Directive (NECD);
6. Framework Directive on the Sustainable Use of Pesticides (FDSUP);
7. Birds & Habitat Directive (BHD);
8. EU Strategy for Sustainable Development (EU SDS).

The needs of each policy were first reviewed with respect to the data and reporting requirements. This was done through extensive literature review in the first year of solving project and consultation with experts within the project team and the wider steering group. The availability and quality of the data collected to date for each policy at a national level were then investigated, and case studies for the Czech Republic for which more detailed information is processing.

Alternative data sources to those that were routinely used to meet the needs of the policy were considered, as was the sustainability of data delivery and any developments and progress in data collection described by Selenius, Baudouin and Kremer (2011) in the list of 32 AEsIs confirmed by the EC. Finally, the potential synergies between the data requirements of the policies and those of the AEsIs were identified and summarised.5

The agriculture and food processing sector's products are also enduring, in some instances lasting hundreds of years and forever changing the landscape in which they sit. These reasons, combined with the growing appetite for sustainability information from stakeholders and an increasing number of companies managing and reporting on their performance, have given rise to the need for reporting.

2.3 ISO and corporate performance indicators and reporting

The International Organization for Standardization (ISO)6, the world's largest developer of voluntary International Standards, and the GRI, signed a Memorandum of Understanding (MoU) on 5 September 2011 to increase their cooperation. The MoU is intended to leverage the activities of the two organizations related to reporting and benchmarking by businesses and on sustainable development by sharing information on ISO standards and GRI programs, teaming up with other partners, participating in the development of new or revised documents, joint promotion and communication. ISO and GRI are also meant to support and promote each other's involvement in initiatives related to sustainable development, such as the Rio+20 conference in Brazil in 2012, and other programmes by organizations such as the United Nations Global Compact (UN Global Compact, 2010), the Organization for Economic Co-operation and Development (OECD) (OECD Guidelines, 2010), and the United Nations Environment Programme Finance Initiative (UNEP FI) (UNEP FI, 2010).

The standard ISO 14031:1999 Environmental management – Environmental Performance Evaluation – Guidelines gives the guidance on the design and use of environmental performance evaluation, and on identification and selection of environmental performance indicators, for use by all organizations, regardless of type, size, location and complexity.

The standard ISO 14063:2006 Environmental management – Environmental communication – Guidelines and examples gives the guidance on an organization on general principles, policy, strategy and activities relating to both internal and external environmental communication and reporting. It utilizes proven and well-established approaches for communication, adapted to the specific conditions that exist in environmental communication.

The standard ISO 26000:2010 Guidance Standard on Social Responsibility emphasizes the value of public reporting on social responsibility performance for internal and external stakeholders, such as employees, local communities, investors and regulators. The ISO 26000 provides guidance on the underlying principles of social responsibility, the core subjects and issues pertaining to social responsibility and on ways to integrate socially responsible behaviour into existing organizational strategies, systems, practices and processes. ISO 26000 also emphasizes the importance of results and improvements in social performance. This represents an important new level of international attention with respect to the issue of reporting with environmental and sustainability indicators, and is aligned with GRI's vision that disclosure on ESG performance and KPIs becomes as common place and comparable as financial reporting (GRI and ISO 26000, 2011).

6 http://www.iso.org/iso/home.html
2.4 Integrated reporting and environmental and sustainability indicators

Integrated Reporting is a new approach to corporate reporting that demonstrates the linkages between an organization's strategy, governance and financial performance and the social, environmental and economic context within which it operates. By reinforcing these connections, Integrated Reporting can help business to take more sustainable decisions and enable investors and other stakeholders to understand how an organization is really performing.

The International Integrated Reporting Council (IIRC, 2012) was established to support the evolution of integrated reporting. The IIRC brings together the world's leaders from the corporate, investment, accounting, securities, regulatory, academic and standard-setting sectors, as well as civil society. The IIRC aims to develop a new approach to reporting – one that is fit for purpose in the 21st Century – building on the foundations of financial, narrative, governance and sustainability reporting, but in a way that reflects the reality that all these elements are closely related and interdependent, and flow from the organization's overall strategy and business model. In September 2011 the IIRC published its discussion paper Towards Integrated Reporting – Communicating Value in the 21st Century, (Towards Integrated Reporting, 2011), which offers initial proposals for the development of an International Integrated Reporting Framework and outlines the next steps towards its creation and adoption.

GRI is one of the co-conveners of the IIRC and is actively participating in its working groups and task forces. GRI works towards making disclosure of sustainability impacts a mainstream business activity. There are different paths to mainstreaming, and many uses for corporate sustainability reporting: as a standalone discipline; as part of a company’s research and development; as a platform for providing data to specific stakeholder groups, like investors; and now, as an intrinsic element of integrated reporting.

GRI supports the development of integrated reporting as it has the potential to make a large contribution to the mainstreaming disclosure of sustainability impacts.

2.5 Conclusion

According to recent research, 95 percent of the world’s 250 biggest companies now report their sustainability performance. GRI produces a comprehensive sustainability reporting framework that is widely used around the world. The Framework, which includes the Sustainability Reporting Guidelines, features PIs that organizations can use to measure and report their sustainability performance. FPSS enables to implement GRI Framework also in food processing sector and AEIs can enlarge FPSS environmental performance indicators into agriculture sector.

In the past decade, corporate performance reporting has evolved to include sustainability information, on the economic, social and environmental performance of an organization. Around the world, more companies are releasing sustainability performance information, both through annual sustainability reports or an equivalent document, and – because of the increasing demand for it – also through other means, such as websites, newsletters and other corporate reports. Increasingly, companies are integrating sustainability disclosures into their regular reporting cycle. Today, some 4,500 organizations report their sustainability performance.

GRI has launched a new XBRL taxonomy for tagging sustainability data in reports, making it easier for report users – including regulators, investors and analysts – to find and analyze data. The GRI Taxonomy – which is available for free – was developed in collaboration with Deloitte Netherlands. A team of experts from different stakeholder communities reviewed the draft taxonomy before the Public Comment Period.

GRI taxonomy will enable companies and other organizations to use XBRL (XBRL, 2012) to improve their sustainability reporting and make the data in their reports more accessible (Isenmann, Gomez, 2009).

Nelma Arbex, Deputy Chief Executive of the GRI, said: Today’s new taxonomy is a major step forward in making sustainability data available to society. Many companies already use XBRL to tag their financial performance data; the GRI Taxonomy means that companies can tag their sustainability data, making it easily accessible for people who want to find information in the report.

We are going to develop ICT tools in the project No. P403/11/2085 for corporate performance indicators evaluation for Agriculture and Food Processing sectors and use these in corporate sustainability reporting (Hodinka et al., 2012). In this case, we would deal with creation of an application supported by XBRL format used for a data input. The input data would possess the form of a company report considering the subject area. The application would evaluate a company efficiency.

3 Corporate performance indicators development

The creation of reliable methods of corporate performance measurement at agriculture and food processing sector where concurrent acting of multiple factors is in play can be considered a prerequisite for success not only in decision-making, but also with regard to corporate governance, comparison possibilities, development of a healthy competition environment etc.

The GRI Framework, EU, OECD and UNEP FI (UNEP FI, 2010) states that corporate performance indicators may be both quantitative and qualitative and that they should cover the reporting entity's direct and indirect impacts across economic, environmental and social dimensions.
Economic indicators include proxies for the organization’s impact on resources at the shareholder level and on other economic systems at the local, national and global level. This heading also encompasses issues dealing with remuneration paid to employees and money received from customers, to name but a few.

Environmental indicators deal with the measurement of an organization’s impact on the environment via its products and services and its activities.

Social indicators deal with labour practices, human rights and broader social issues affecting a broad range of stakeholders.

Governance indicators deal with corporate governance is a term that refers broadly to the rules, processes, or laws by which businesses are operated, regulated, and controlled. The term can refer to internal governance indicators/factors defined by the officers, stockholders or constitution of a corporation, as well as to external forces such as consumer groups, clients, and government regulations.

One of the possible approaches is to also take into account successful solutions to economic, environmental and social issues and governance in relation to measurement of corporate performance, as well as its continued success (Kocmanová, Němeček, 2009). Disregarding such aspects of performance in the unified reporting (e.g. prepared G4 Guidelines for Corporate Sustainability Reporting) by company managers may result in creating further and even deeper problems. For the purpose of collecting corporate performance data it is necessary to determine the KPIs of the given organization of investigated sector. We are going to select the optimal set of KPIs in relation to NACE economic activities (NACE, 2011): A – Agriculture, forestry and fishing section where we considered only subsections 01 – Crop and animal production, hunting and related service activities excluding 01.07 (hunting, trapping and related service activities) and C – Manufacturing section where we considered only subsections 10 – Manufacture of food products excluding 10.9 (feed industry) and 11 – Manufacture of beverages. Further we consider the mandatory financial reporting of organizations in the Czech Republic.

3.1 Integration of economic performance and its indicators in investigated sectors

The economic dimension of sustainability concerns the organization’s impacts on living and non-living natural systems, including ecosystems, land, air, and water. Environmental indicators cover performance related to inputs (e.g., material, energy, water) and outputs (e.g., emissions, effluents, waste). In addition, they cover performance related to biodiversity, environmental compliance, and other relevant information such as environmental expenditure and the impacts of products and services. We have determined KPIs for environmental reporting using results of our previous research in this field (Hřebíček, Soukopová, Kutová, 2010), (Soukopová, Bakoš, 2010), (Soukopová, Struk, 2011) using the G3.1 Guideline and EMAS indicators (EMAS III, 2009), which were accepted by the Ministry of Environment of the Czech Republic as its official methodology for environmental reporting. The proposed KPIs shall apply to all organizations in all economic activity sectors including agriculture and food processing sectors:

1. Efficiency of material consumption, where are used EN1 and EN2 indicators from GRI’s Reporting Guidelines;
2. Energy efficiency, where are used EN3, EN4 indicators from GRI’s Reporting Guidelines;
3. Water management, where is used EN8 indicator from GRI’s Reporting Guidelines;
4. Waste management, where we used EN22 indicator from GRI’s Reporting Guidelines;

Financial performance is fundamental to understanding an organization and its own sustainability. However, this information is normally already reported in financial accounts. What is often reported less, and is frequently desired by users of sustainability reports, is the organization’s contribution to the sustainability of a larger economic system.

We took into account GRI’s Reporting Guidelines FPSS and choose following economic KPIs also connected with Agriculture (Kocmanová, Dočekalová, 2012):

1. EC1 – Direct economic value generated and distributed, including revenues, operating costs, employee compensation, donations and other community investments, retained earnings, and payments to capital providers and governments.
2. EC4 – Significant financial assistance received from government.

We have used our developed ICT tools based on the abovementioned XBRL taxonomy to facilitate the calculations and the visualizations of above mentioned chosen economical performance indicators (Hodinka et al., 2012).

3.2 Integration of environmental performance and its indicators in investigated sectors

The environmental dimension of sustainability concerns an organization’s impacts on living and non-living natural systems, including ecosystems, land, air, and water. Environmental indicators cover performance related to inputs (e.g., material, energy, water) and outputs (e.g., emissions, effluents, waste). In addition, they cover performance related to biodiversity, environmental compliance, and other relevant information such as environmental expenditure and the impacts of products and services. We have determined KPIs for environmental reporting using results of our previous research in this field (Hřebíček, Soukopová, Kutová, 2010), (Soukopová, Bakoš, 2010), (Soukopová, Struk, 2011) using the G3.1 Guideline and EMAS indicators (EMAS III, 2009), which were accepted by the Ministry of Environment of the Czech Republic as its official methodology for environmental reporting. The proposed KPIs shall apply to all organizations in all economic activity sectors including agriculture and food processing sectors:
5. **Biodiversity**, where are used EN12 and EN13 indicators from GRI's Reporting Guidelines; 6. **Air pollution**, where are used EN16, EN17, EN19, EN20, EN21, EN23 indicators from GRI's Reporting Guidelines; Following suggestions of Eurostat for agriculture sector, a distinction was made between two sets of AEIs; here termed the first and second set of AEIs (Selenius, Baudouin, Kremer, 2011). This distinction was based on the fact that the first set of AEIs are derived primarily from the farm or at farm level. In contrast, the second set of AEIs are not all yet fully defined and developed, and the data required are derived, in general, from sources other than at farm level. The two sets of AEIs are listed below in the Table I, where the first set of AEIS is grey.

From where can data be obtained to calculate AEIs? There are following three surveys of EU serve as existing data sources for several of the 32 AEIs:

- **Farm Structure Survey** (FSS)\(^7\),\(^8\). The FSS provides comparable statistical data on the structures of farms and horticultural enterprises in all member states. The statistics contain data on the number of farms, production sector, form of ownership, land use, crop production, livestock production, farmers and other labour force on farms, working hours spent on agricultural work, working outside the farm, secondary business activities on farms, organic production, machinery and equipment on farms, manure pits, and irrigated areas.

- **Survey on Agricultural Production Methods** (SAPM). SAPM is a one-off supplement to FSS focusing on production methods and management, and includes questions on the following topics; tillage methods, soil conservation, actions against erosion and nutrient leaching, landscape features, animal grazing, animal housing, nutrients, manure storage and treatment facilities, plant protection, and irrigation.

- **Farm Accountancy Data Network** (FADN)\(^9\),\(^10\). The FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. The concept of the FADN was launched in 1965, when Council Regulation 79/65 established the legal basis for the organisation of the network. It consists of an annual survey carried out by the Member States of the EU accountancy data from a sample of the agricultural holdings in the EU every year. Derived from national surveys, the FADN is the only source of microeconomic data that is harmonised, i.e. the bookkeeping principles are the same in all countries. Holdings are selected to take part in the survey on the basis of sampling plans established at the level of each region in the EU. The survey does not cover all the agricultural holdings in the EU but only those which due to their size could be considered commercial.

We are going to develop XBRL tools to facilitate the calculations and the visualizations of these integrated environmental performance indicators (Hodinka et al., 2012).

3.3 Integration of social performance and its indicators in investigated sectors

The social dimension of sustainability concerns the impacts for company that has on the social systems within which it operates. We are going to determine KPIs for social performance based on the GRI social performance indicators to identify key performance aspects surrounding labor practices, human rights, society, and product responsibility (Hřebíček, Soukopová, Štencl, Trenz, 2011), (G3.1 Guidelines, 2011), (GRI Reporting Framework, 2006) and in the following key areas:

1. **Labor Practices and Decent Work indicators** are broadly based on the concept of decent work. The set begins with disclosures on the scope and diversity of the reporting organization's workforce, emphasizing aspects of gender and age distribution. We here take into account following KPIs:

- Employment – LA1 and LA3 indicators from FPSS;
- Labour/management relations – LA4, LA5 and FP3 (Percentage of working time lost due to industrial disputes, strikes and/or lock-outs, by country) indicators from FPSS;
- Occupational Health and Safety – LA7, LA8 indicators from FPSS;
- Training and Education – LA10 indicator from FPSS;
- Diversity and Equal Opportunity – LA13 and LA14 indicators from FPSS;

2. **Human Rights indicators** require companies to report on the extent to which human rights are considered in investment and supplier/contractor selection practices. We here take into account:

- Investment and procurement practices – HR1 and HR2 indicators from FPSS;
- Non-discrimination – HR4 indicator from FPSS;
- Freedom of association and collective bargaining – HR5 indicator from FPSS;
- Child labour – HR6 indicator from FPSS;
- Forced and compulsory labour – HR7 indicator from FPSS;

\(^9\) http://ec.europa.eu/agriculture/rica/

I: List of the 32 Agri-Environmental Indicators connected with DPSIR Framework (Selenius, Baudouin, Kremer, 2011)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sub-domain</th>
<th>AEI No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses</td>
<td>AEI1</td>
<td></td>
<td>Agri-environmental commitments</td>
</tr>
<tr>
<td></td>
<td>AEI2</td>
<td></td>
<td>Agricultural areas under Natura 2000</td>
</tr>
<tr>
<td>Technology and skills</td>
<td>AEI3</td>
<td></td>
<td>Farmers’ training level and use of environmental farm advisory services</td>
</tr>
<tr>
<td>Market signals and attitudes</td>
<td>AEI4</td>
<td></td>
<td>Area under organic farming</td>
</tr>
<tr>
<td>Input use</td>
<td>AEI5</td>
<td></td>
<td>Mineral fertiliser consumption</td>
</tr>
<tr>
<td></td>
<td>AEI6</td>
<td></td>
<td>Consumption of pesticides</td>
</tr>
<tr>
<td></td>
<td>AEI7</td>
<td></td>
<td>Irrigation</td>
</tr>
<tr>
<td></td>
<td>AEI8</td>
<td></td>
<td>Energy use</td>
</tr>
<tr>
<td>Land use</td>
<td>AEI9</td>
<td></td>
<td>Land use change</td>
</tr>
<tr>
<td></td>
<td>AEI10.1</td>
<td></td>
<td>Cropping patterns</td>
</tr>
<tr>
<td></td>
<td>AEI10.2</td>
<td></td>
<td>Livestock patterns</td>
</tr>
<tr>
<td>Farm management</td>
<td>AEI11.1</td>
<td></td>
<td>Soil cover</td>
</tr>
<tr>
<td></td>
<td>AEI11.2</td>
<td></td>
<td>Tillage practices</td>
</tr>
<tr>
<td></td>
<td>AEI11.3</td>
<td></td>
<td>Manure storage</td>
</tr>
<tr>
<td>Trends</td>
<td>AEI12</td>
<td></td>
<td>Intensification/extensification</td>
</tr>
<tr>
<td></td>
<td>AEI13</td>
<td></td>
<td>Specialisation</td>
</tr>
<tr>
<td></td>
<td>AEI14</td>
<td></td>
<td>Risk of land abandonment</td>
</tr>
<tr>
<td>Polluton</td>
<td>AEI15</td>
<td></td>
<td>Gross nitrogen balance</td>
</tr>
<tr>
<td></td>
<td>AEI16</td>
<td></td>
<td>Risk of pollution by phosphorus</td>
</tr>
<tr>
<td></td>
<td>AEI17</td>
<td></td>
<td>Pesticide risk</td>
</tr>
<tr>
<td></td>
<td>AEI18</td>
<td></td>
<td>Ammonia emissions</td>
</tr>
<tr>
<td></td>
<td>AEI19</td>
<td></td>
<td>Greenhouse gas emissions</td>
</tr>
<tr>
<td>Resource depletion</td>
<td>AEI20</td>
<td></td>
<td>Water abstraction</td>
</tr>
<tr>
<td></td>
<td>AEI21</td>
<td></td>
<td>Soil erosion</td>
</tr>
<tr>
<td></td>
<td>AEI22</td>
<td></td>
<td>Genetic diversity</td>
</tr>
<tr>
<td>Benefits</td>
<td>AEI23</td>
<td></td>
<td>High Nature Value farmland</td>
</tr>
<tr>
<td></td>
<td>AEI24</td>
<td></td>
<td>Renewable energy production</td>
</tr>
<tr>
<td>Biodiversity and habitats</td>
<td>AEI25</td>
<td></td>
<td>Population trends of farmland birds</td>
</tr>
<tr>
<td>Natural resources</td>
<td>AEI26</td>
<td></td>
<td>Soil quality</td>
</tr>
<tr>
<td></td>
<td>AEI27.1</td>
<td></td>
<td>Water quality – Nitrate pollution</td>
</tr>
<tr>
<td></td>
<td>AEI27.2</td>
<td></td>
<td>Water quality – Pesticide pollution</td>
</tr>
<tr>
<td>Landscape</td>
<td>AEI28</td>
<td></td>
<td>Landscape – state and diversity</td>
</tr>
</tbody>
</table>

3. **Society indicators** focus the attention on the impacts organizations have on the communities in which they operate, and disclosing how the risks that may arise from interactions with other social institutions are managed and mediated. In particular, information on the risks associated with bribery and corruption is sought, as well as information on the undue influence in public policy-making, and monopoly practices. We here take into account:

- **Local community** – SO1 and FP4 (Nature, scope and effectiveness of any programs and practices (in-kind contributions, volunteer initiatives, knowledge transfer, partnerships and product development) that promote healthy lifestyles; the prevention of chronic diseases; access to healthy, nutritious and affordable food; and improved welfare for communities in need) indicators from FPSS;
- **Corruption** – SO2, SO3 and SO4 indicators from FPSS;
- **Public policy** – SO5 and SO6 indicators from FPSS.

4. **Product responsibility indicators** address the aspects of a reporting organization’s products and services that directly affect customers. We take into account namely:

- **Customer Health and Safety** – PR1, FP5 (Percentage of production volume manufactured in sites certified by an independent third party according to internationally recognized food safety management system standards), FP6 (Percentage of total sales volume of consumer products, by product category, that are lowered in saturated fat,
trans fats, sodium and sugars) and FP7 (Percentage of total sales volume of consumer products, by product category sold, that contain increased fiber, vitamins, minerals, phytochemicals or functional food additives) indicators from FPSS.

- **Products and Services Labelling** – PR3, and FP8 (Policies and practices on communication to consumers about ingredients and nutritional information beyond legal requirements) indicators from FPSS.

The integration process of the development of the complete set of social performance indicators is in progress and the final version of KPIs is planned to be complete, as a part of our research project, towards the end of this year.

3.3 Integration of corporate governance performance and its indicators in investigated sectors

We have analyzed the corporate governance performance of an organization Agriculture and Food Processing sector vis-à-vis clear and transparent management principles: efforts for clarification and transparency; level of clarification of stakeholders; transparency of stakeholders.

We are going to propose corporate governance indicators that cover the exercise of leadership: direct participation by CEO; communication with employees; communication from employees.

We also consider further corporate governance indicators that could cover, as far as management systems are concerned:

- **Functional powers of board of directors and board of auditors (or auditors)** in: participation in real discussion; integration of external perspectives; opinions of auditors/board of auditors; support given to auditors.

- **Appointment and assessment of CEO in**: appointment; assessment and removal; decisions on remuneration.

Within the context of the organization's management as an effective decision-making authority for global organizations, we have developed an approach to reviewing the corporate governance effectiveness that we have structured this around three areas of risk and underperformance.

4 CONCLUSIONS

The presented paper has introduced chosen results of the project No. P403/11/2085 Construction of Methods for Multifactorial Assessment of Company Complex Performance in Selected Sectors funded by the Grant Agency of the Czech Republic.

There were presented the results of the analysis of the state-of-art on economic, environmental, social and corporate governance indicators at Agriculture and Food Processing Sector and their integration to integrated reporting.

SUMMARY

The content of the paper are a summary of the results that have been reached so far in the Czech Science Foundation Project No. P403/11/2085 Construction of Methods for Multifactorial Assessment of Company Complex Performance in Selected Sectors – in the area of research of corporate performance. The situation of companies is assessed at the level of establishing key performance indicators (KPIS), in accordance with environmental, social and governance performance, in the agricultural and food processing sectors, and this in the case of companies which have registered the ISO 9000, ISO 14000 and ISO 18000 certificates. The economical performance has been measured on the basis of reaching the ESG indicators of environmentally sustainable development and the sustainable development in social, economical and corporate governance. The analysis which has been carried out and the possibilities of measuring a company's efficiency are directly tied with the previous work of the author's. New approaches in company reporting connected with the Global Reporting Initiative (GRI) and in union with the sustainable development in organizations have also been discussed. The analysis was in accord with the valid legislation, norms and standards in the given area. The subsequent development has also been discussed with the newly prepared documents (standards) in view. The new form of company reporting shows the close links between organizations and even their own structure, while it influences the company's strategy, its administration, its financial efficiency, and this in the social and ecological contexts. The new GRI introduces an XBRL taxonomy for supporting the accessibility of the contents using a suitable labelling of the distributed data for concrete subjects (individuals, companies). This, as well as the creation of software applications oriented towards company performance assessment together with using XRBL, will be the next subject matter of the project that is currently being worked on.

Acknowledgment

This paper is supported by the Czech Science Foundation. Name of the Project: Construction of Methods for Multifactorial Assessment of Company Complex Performance in Selected Sectors. Registration No. P403/11/2085.
REFERENCES

Address
prof. RNDr. Jiří Hřebíček, CSc., Ing. Ondřej Popelka, Ph.D., Ing. Michael Štencl, Ph.D., Ing. Oldřich Trenz, Ph.D., Ústav informatiky, Mendelova univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká republika, e-mail: jiri.hrebicek@mendelu.cz, ondrej.popelka@mendelu.cz, michael.stencl@mendelu.cz, oldrich.trenz@mendelu.cz