Acta Univ. Agric. Silvic. Mendelianae Brun. 2020, 68, 9-16

https://doi.org/10.11118/actaun202068010009
Published online 2020-02-27

The Effect of High Summer Temperatures on Reproduction in Holstein and Czech Fleckvieh

Jiří Bezdíček1, Andrea Nesvadbová1, František Louda2

1Palacký University Olomouc, Department of Zoology and Laboratory of Ornithology, Faculty of Science, 17. listopadu 50, 771 46 Olomouc, Czech Republic
2Research Institute for Cattle Breeding Rapotin, Ltd., Department of Feed, Nutrition, Breeding and Reproduction, Výzkumníků 267, 788 13 Vikýřovice, Czech Republic

Received November 29, 2019
Accepted February 7, 2020

References

1. AL‑KATANANI, Y. M., WEBB, D. W. and HANSEN, P. J. 1999. Factors affecting seasonal variation in 90‑day nonreturn rate to first service in lactating Holstein cows in a hot climate. J. Dairy Sci., 82(12): 2611–2616. <https://doi.org/10.3168/jds.S0022-0302(99)75516-5>
2. AL-KATANANI, Y. M., PAULA-LOPES, F. F. and HANSEN, P. J. 2002. Effect of season and exposure.to heat stress on oocyte competence in Holstein cows. J. Dairy Sci., 85: 390–396. <https://doi.org/10.3168/jds.S0022-0302(02)74086-1>
3. ANDRÉ, G., ENGEL, B., BERENTSEN, P. B. M., VELLINGA, T. V. and OUDE LANSINK, A. G. J. M. 2011. Quantifying the effect of heat stress on daily milk yield and monitoring dynamic changes using an adaptive dynamic model. J. Dairy Sci., 94: 4502–4513. <https://doi.org/10.3168/jds.2010-4139>
4. BERNABUCCI, U., LACETERA, N., RONCHI, B. and NARDONE, A. 2002. Effects of the hot season on milk protein fractions in Holstein cows. Anim. Res., 51: 25–33. <https://doi.org/10.1051/animres:2002006>
5. BERNABUCCI, U., BASIRICÒ, L., MORERA, P., DIPASQUALE, D., VITALI, A., PICCIOLI CAPPELLI, F. and CALAMARI, L. 2014. Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci., 98: 1815–1827. <https://doi.org/10.3168/jds.2014-8788>
6. BEZDÍČEK, J., MAKAREVICH, A., STÁDNÍK, L., KUBOVIČOVÁ, E., LOUDA, F., HEGEDÜŠOVÁ, Z., HOLÁSEK, R., DUCHÁČEK, J. and STUPKA, R. 2015. Analysis of factors affecting the quantity and quality of embryo production in superovulated cows. Züchtungskunde, 87(4): 249–264.
7. BEZDÍČEK, J., MAKAREVIČ, A., OLEXIKOVA L., KUBOVIČOVÁ, E. and VRÁNOVÁ, Z. 2016. The influence of season on the ovarian activity and oocyte yield in cattle – in czech. Slovenský veterinársky časopis, 41(3–4): 173–174.
8. COLLIER, R. J., COLLIER, J. L., RHOADS, R. P. and BAUMGARD, L. H. 2008. Genes involved in the bovine heat stress response. J. Dairy. Sci., 91: 445–454. <https://doi.org/10.3168/jds.2007-0540>
9. CHEBEL, R. C., SANTOS, J. E. P., REYNOLDS, J. P., CERRI, R. L. A., JUCHEM, S. O. and OVERTON, M. 2004. Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Anim. Repr. Sci., 84: 239–255. <https://doi.org/10.1016/j.anireprosci.2003.12.012>
10. De RENSISI, F., MARCONI, P., CAPELLI, T., GATTI, F., FACCIOLONGO, F., FRANZINI, S. and SCARAMUZZI, R. J. 2002. Fertility in postpartum dairy cows in winter or summer following estrus synchronization and fixed time AI after the induction of an LH surge with GnRH or hCG. Theriogenology, 58(9): 1675–1687. <https://doi.org/10.1016/S0093-691X(02)01075-0>
11. DIKMEN, S., ALAVA, E., PONTES, E., FEAR, J. M., DIKMEN, B. Y., OLSON, T. A. and HANSEN, P. J. 2008. Differences in thermoregulatory ability between slick-haired and wild-type lactating Holstein cows in response to acute heat stress. J. Dairy Sci., 91: 3395–3402. <https://doi.org/10.3168/jds.2008-1072>
12. FERREIRA, R. M., AYRES, H., CHIARATTI., M. R., FERRAZ, M. L., ARAUJO, A. B., RODRIGUES, C. A., WATANABE, Y. F., VIREQUE, A. A., JOAQUIM, J. C., SMITH, L. C., MEIRELLES, F. V. and BARUSELLI, P. S. 2011. The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. J. Dairy Sci., 94, 2383–2392. <https://doi.org/10.3168/jds.2010-3904>
13. HERNÁNDEZ-CERÓN, J., CHASE, JR. C. C. and HANSEN, P. J. 2004. Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus Breeds. J. Dairy Sci., 87: 53–58. <https://doi.org/10.3168/jds.S0022-0302(04)73141-0>
14. LEGRAND, A., SCHÜTZ, K. E. and TUCKER, C. B. 2011. Using water to cool cattle: Behavioral and physiological changes associated with voluntary use of cow showers, J. Dairy Sci., 94: 3376–3386. <https://doi.org/10.3168/jds.2010-3901>
15. MATHEVON, M., BUHR, M. M. and DEKKERS, J. C. M. 1998. Enviromental, management, and genetic factors affecting semen production in Holstein bulls. J. Dairy Sci., 81(12): 3321–3330. <https://doi.org/10.3168/jds.S0022-0302(98)75898-9>
16. MORTON, J. M., TRANTER, W. P. MAYER, D. G. and JONSSON, N. N. 2007. Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. J. Dairy Sci., 90: 2271–2278. <https://doi.org/10.3168/jds.2006-574>
17. NICHI, M., BOLS, P. E. J., ZUGE, R. M., BARNABE, V. H., GOOVAERST, I. G. F., BARNABE, R. C. and CORTADA, C. N. M. 2006. Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology, 66(4): 822–828. <https://doi.org/10.1016/j.theriogenology.2006.01.056>
18. OSENI, S., MISTZAL, I., TSURUTA, S. and REKAYA, R. 2004. Genetic components of days open under heat stress. J. Dairy Sci., 87: 3022–3028. <https://doi.org/10.3168/jds.S0022-0302(04)73434-7>
19. PAULA-LOPES, F. F., CHASE, JR. C. C., AL-KATANANI, Y. M., KRININGER III, C. E., RIVERA, R. M., TEKIN, S., et al. 2003. Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lym-phocytes to increased culture temperatures. Reproduction, 125: 285–294. <https://doi.org/10.1530/rep.0.1250285>
20. PUTNEY, D. J., DROST, M. and THATCHER, W. W. 1988. Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between Days 1 to 7 post insemination. Theriogenology, 34: 195–209. <https://doi.org/10.1016/0093-691X(88)90169-0>
21. RAVAGNOLO, O. and MISZTAL, I. 2002. Effect of heat stress on non return rate in Holsteins: Fixed-model analyses. J. Dairy Sci., 85: 3101–3106. <https://doi.org/10.3168/jds.S0022-0302(02)74397-X>
22. RAY, D. E., JASSIM, A. H., ARMSTRONG, D. V., WIERSMA, F. and SCHUH, J. D. 1992. Influence of season and microclimate on fertility of dairy cows in a hot-arid environment. Int. J. Biometeorol., 36: 141–145. <https://doi.org/10.1007/BF01224816>
23. ROCHA, A., RANDEL, R. D., BROUSSARD, J. R., LIM, J. M., BLAIR, R. M., ROUSSEL, J. D., GODKE, R. A. and HANSEL, W. 1998. High environ-mental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos indicus cows. Theriogenology, 49: 657–665. <https://doi.org/10.1016/S0093-691X(98)00016-8>
24. RYAN, D. P., PRICHARD, J. F., KOPEL, E. and GODKE, R. A. 1993. Comparing early embryo mortality in dairy cows during hot and cool seasons of the year. Theriogenology, 39: 719–737. <https://doi.org/10.1016/0093-691X(93)90257-6>
25. SCHÜLLER, L. K., BURFEIND, O. and HEUWIESER, W. 2014. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature – humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology, 81: 1050–1057. <https://doi.org/10.1016/j.theriogenology.2014.01.029>
26. SCHÜTZ, K. E., ROGERS, A. R., COX, N. R., WEBSTER, J. R. and TUCKER, C. B. 2011. Dairy cattle prefer shade over sprinklers: Effects on behavior and physiology. J. Dairy Sci., 94: 273–283. <https://doi.org/10.3168/jds.2010-3608>
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive