Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67, 1221-1226

https://doi.org/10.11118/actaun201967051221
Published online 2019-10-31

Mastitis Detection from Milk Mid-Infrared (MIR) Spectroscopy in Dairy Cows

Lisa Rienesl1, Negar Khayatzadeh1, Astrid Köck2, Laura Dale3, Andreas Werner3, Clément Grelet4, Nicolas Gengler5, Franz-Josef Auer6, Christa Egger-Danner2, Xavier Massart7, Johann Sölkner1

1University of Natural Resources and Life Sciences, Vienna (BOKU), Division of Livestock Sciences, Department of Sustainable Agricultural Systems, Gregor-Mendel-Strasse 33, A-1180 Vienna, Austria
2ZuchtData EDV-Dienstleistungen GmbH, Dresdner Straße 89/19, A-1200 Vienna, Austria
3Landesverband Baden-Württemberg für Leistungs- und Qualitätsprüfungen in der Tierzucht e.V. (LKV), Heinrich-Baumann Straße 1-3, 70190 Stuttgart, Germany
4Centre Wallon de Recherches Agronomiques (CRA-W), Chaussée de Namur 24, B-5030 Gembloux, Belgium
5Université de Liège (ULg), Gembloux Agro-Bio Tech, Passage des Déportés 8, B-5030 Gembloux, Belgium
6LKV Austria Gemeinnützige GmbH, Dresdner Straße 89/19, A-1200 Wien, Austria
7European Milk Recording (EMR), Rue des Champs Elysées 4, 5590 Ciney, Belgium

Received July 22, 2019
Accepted September 25, 2019

References

1. BELAY, T. K., SVENDSEN, M., KOWALSKI Z. M. and ÅDNØY, T. 2017. Genetic parameters of blood β-hydroxybutyrate predicted from milk infrared spectra and clinical ketosis, and their associations with milk production traits in Norwegian Red cows. Journal of Dairy Science, 100(8): 6298–6311. <https://doi.org/10.3168/jds.2016-12458>
2. DALE, L. and WERNER, A. 2017. “MastiMIR” – A warning system for mastitis based on MIR spectra [in German: “MastiMIR” – Ein Mastitis-Frühwarnsystem basierend auf MIR-Spektren]. In: Vortragstagung der DGfZ und GfT: Aus der Arbeit der Forschungsstätten für Tierwissenschaften. 20– 21 September 2017, Stuttgart, Deutschland.
3. DE ROOS, A. P., VAN DEN BIJGAART, H. J., HØRLYK, J. and DE JONG, G. 2007. Screening for subclinical ketosis in dairy cattle by Fourier transform infrared spectrometry. Journal of Dairy Science, 90(4): 1761–1766. <https://doi.org/10.3168/jds.2006-203>
4. D4DAIRY CONSORTIUM. 2019. D4Dairy. [Online]. Available at: https://d4dairy.com/de/#projekt [Accessed: 2019, June 21].
5. FÜRST, C., DODENHOFF, J., EGGER-DANNER, C., EMMERLING, R., HAMANN, H., KROGMEIER, D. and SCHWARZENBACHER, H. 2019. Breeding value estimation in cattle – Basics, methods and interpretation [in German: Zuchtwertschätzung beim Rind - Grundlagen, Methoden und Interpretationen]. Vienna: ZuchtData EDV-Dienstleistungen GmbH.
6. GENGLER, N., TIJANI, A., WIGGANS, G. R. and MISZTAL, I. 1999. Estimation of (co)variance function coefficients for test day yield with an expectation-maximization restricted maximum likelihood algorithm. Journal of Dairy Science, 82(8): 1849.e1–1849.e23. <https://doi.org/10.3168/jds.S0022-0302(99)75417-2>
7. GRELET, C., FERNÁNDEZ PIERNA, J. A., DARDENNE, P., BAETEN, V. and DEHARENG, F. 2015. Standardization of milk mid-infrared spectra from a European dairy network. Journal of Dairy Science, 98(4): 2150–2160. <https://doi.org/10.3168/jds.2014-8764>
8. GRELET, C., FERNÁNDEZ PIERNA, J. A., DARDENNE, P., SOYEURT, H., VANLIERDE, A., COLINET, F., GENGLER, N., BAETEN, V. and DEHARENG, F. 2016. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate and citrate contents in bovine milk through a European dairy network. Journal of Dairy Science, 99(6): 4816–4825. <https://doi.org/10.3168/jds.2015-10477>
9. GUIMARÃES, J. L., BRITO, M. A., LANGE, C. C., SILVA, M. R., RIBEIRO, J. B., MENDONÇA, L. C., MENDONÇA, J. F. M. and SOUZA, G. N. 2017. Estimate of the economic impact of mastitis: A case study in a Holstein dairy herd under tropical conditions. Preventive Veterinary Medicine, 142: 46–50. <https://doi.org/10.1016/j.prevetmed.2017.04.011>
10. HAMANN, J. and KRÖMKER, V. 1997. Potential of specific milk composition variables for cow health management. Livestock Production Science, 48(3): 201–208. <https://doi.org/10.1016/S0301-6226(97)00027-4>
11. HALASA, T., HUIJPS, K., ØSTERÅS, O. and HOGEVEEN, H. 2007. Economic effects of bovine mastitis and mastitis management: A review. Veterinary Quarterly, 29(1): 18–31. <https://doi.org/10.1080/01652176.2007.9695224>
12. HEIKKILÄ, A.-M., NOUSIAINEN, J. I. and PYÖRÄLÄ, S. 2012. Costs of clinical mastitis with special reference to premature culling. Journal of Dairy Science, 95(1): 139–150. <https://doi.org/10.3168/jds.2011-4321>
13. KLAFFENBÖCK, M., STEINWIDDER, A., FASCHING, C., TERLER, G., GRUBER, L., MÉSZÁROS, G. and SÖLKNER, J. 2016. The use of mid-infrared spectrometry to estimate the ration composition of lactating dairy cows. Journal of Diary Science, 100(7): 5411–5421. <https://doi.org/10.3168/jds.2016-12189>
14. KUHN, M. 2008. Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5): 1–26. <https://doi.org/10.18637/jss.v028.i05>
15. MCPARLAND, S., LEWIS, E., KENNEDY, E., MOORE, S. G., MC CARTHY, B., O’DONOVAN, M., BUTLER, S. T., PRYCE, J. E. and BERRY, D. P. 2014. Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows. Journal of Dairy Science, 97(9): 5863–5871. <https://doi.org/10.3168/jds.2014-8214>
16. MINEUR, A., KÖCK, A., GRELET, C., GENGLER, N., EGGER-DANNER, C. and SÖLKNER J. 2017. First Results in the Use of Milk Mid-infrared Spectra in the Detection of Lameness in Austrian Dairy Cows. Agriculturae Conspectus Scientificus, 82(2): 163–166.
17. R DEVELOPMENT CORE TEAM. 2008. R: A language and environment for statistical computing. [Online]. Vienna: R Foundation for Statistical Computing. Available at: http://www.R-project.org. [Accessed: 2009, May 15].
18. SAS INSTITUTE. 2017. SAS software 9.4. Cary, NC, USA: SAS Institute Inc.
19. SOYEURT, H., DARDENNE, P., GILLON, A., CROQUET, C., VANDERICK, S., MAYERES, P., BERTOZZI, C. and GENGLER, N. 2006. Variation in fatty acid contents of milk and milk fat within and across breeds. Journal of Dairy Science, 89(12): 4858–4865. <https://doi.org/10.3168/jds.S0022-0302(06)72534-6>
20. SOYEURT, H., BASTIN, C., COLINET, F., ARNOULD, V., BERRY, D., WALL, E. and MCPARLAND, S. 2012. Mid-infrared prediction of lactoferrin content in bovine milk: Potential indicator of mastitis. Animal, 6(11): 1830–1838. <https://doi.org/10.1017/S1751731112000791>
21. SOYEURT, H., DEHARENG, F., GENGLER, N., MCPARLAND, S., WALL, E., BERRY, D. P., COFFEY, M. and DARDENNE, P. 2011. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science, 94(4): 1657–1667. <https://doi.org/10.3168/jds.2010-3408>
22. VANLIERDE, A., VANROBAYS, M. L., DEHARENG, F., FROIDMONT, E., SOYEURT, H., MCPARLAND, S., LEWIS, E., DEIGHTON, M. H., GRANDL, F., KREUZER, M., GREDLER, B. DARDENNE, P. and GENGLER, N. 2015. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. Journal of Dairy Science, 98: 5740–5747. <https://doi.org/10.3168/jds.2014-8436>
23. WALLÉN, S. E., PRESTLØKKEN, E., MEUWISSEN, T. H. E., MCPARLAND, S. and BERRY, D. P. 2016. Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows. Journal of Dairy Science, 101(7): 6232–6243. <https://doi.org/10.3168/jds.2017-13874>
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive