Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66, 691-700

https://doi.org/10.11118/actaun201866030691
Published online 2018-06-28

Application of Nitrogen Fertilizers and Its Effect on Timeliness of Fertilizers Decomposition Resulting in Lost of Nitrogen Through Nitrous Oxide Emissions from Soil

Koloman Krištof1, Tomáš Šima1, Ladislav Nozdrovický1, Ján Jobbágy1, Jan Mareček2, Vlastimil Slaný2

1Department of Machines and Production Biosystems, Faculty of Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
2Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel Univeresity in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

References

1. AMBUS, P., SKIBA, U., BUTTERBACH-BAHL, K. and SUTTON, M. 2011. Reactive nitrogen and greenhouse gas flux interactions in terrestial ecosystems. Plant and Soil, 343(1 – 2): 1–3. <https://doi.org/10.1007/s11104-011-0777-z>
2. AMBUS, P., ZECHMEISTER-BOLTENSTERN, S. and BUTTERBACH-BAHL, K. 2006. Sources of nitrous oxide emitted from European forrest soils. Biogeosciences, 3: 135–145. <https://doi.org/10.5194/bg-3-135-2006>
3. BOUWMAN, A. F. 1996. Direct emissions of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46(1): 53–70. <https://doi.org/10.1007/BF00210224>
4. DUSLO. 2010. Calk ammonium nitrate – Properties of CAN 27 fertilizer. DUSLO. [Online]. Available at: www.duslo.sk [Accessed: 2016, October 25].
5. DING, W., YU, H., CAI, Z., HAN, F. and XU, Z. 2010. Responses of soil respiration to N fertilization in a loamy soil under maize cultivation. Geoderma, 155(3 – 4): 381–389. <https://doi.org/10.1016/j.geoderma.2009.12.023>
6. DUBEŇOVÁ, M., GÁLIK, R. and MIHINA, Š. 2011. Interim results of monitoring of greenhouse gases emissions in the pigs housing [in Slovak: Priebežné výsledky monitorovania emisií sklenníkových plynov v objektoch pre ošípané]. In: Mendeltech International 2011: Proceedings of scientific papers. Brno: Mendel University in Brno, pp. 3843.
7. EICHNER, M. J. 1990. Nitrous oxide emissions from fertilized soils: Summary of available data. Journal of Environmental Quality, 19: 272–280. <https://doi.org/10.2134/jeq1990.00472425001900020013x>
8. FANG, Q., YU, Q., WANG, E., CHEN, Y., ZHANG, G., WANG, J. and LI, L. 2006. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant and Soil, 284(1 – 2): 335–350. <https://doi.org/10.1007/s11104-006-0055-7>
9. FULTON, J. P., SHEARER, S. A., HIGGINS, S. F., HANCOCK, D. W. and STOMBAUGH, T. S. 2005. Distribution pattern variability of granular VRT applicators. Transactions of the American Society of Agricultural Engineers, 48(6): 2053–2064. <https://doi.org/10.13031/2013.20082>
10. HE, F. F., JIANG, R. F., CHEN, Q., ZHANG, F. S. and SU, F. 2009. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollution, 157: 1666–1672. <https://doi.org/10.1016/j.envpol.2008.12.017>
11. LUMASENSE TECHNOLOGIES. 2007. Innova devices. LumaSense Technologies. [Online]. Available at: www.lumasenseinc.com [Accessed: 2016, October 25].
12. IPCC. 2007a. Climate Change 2007: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
13. IPCC. 2007b. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. Geneva, Switzerland: IPCC.
14. IPCC. 2014. Climate Change 2014: Synthesis Report. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.
15. JIANG-GANG, H., YONG-LI, Z., HONG-YING, B., DONG, Q., JIN-YU, C. and CHUN-DU, W. 2007. N2O emissions under different moisture and temperature regimes. Bulletin of Environmental Contamination and Toxicology, 78: 284–287. <https://doi.org/10.1007/s00128-007-9118-6>
16. JONES, S. K., REES, R. M., SKIBA, U. M. and BALL, B. C. 2007. Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland. Agriculture, Ecosystems & Environment, 121(1 – 2): 74–83. <https://doi.org/10.1016/j.agee.2006.12.006>
17. KAJANOVIČOVÁ, I., LOŽEK, O., SLAMKA, P. and VÁRADY, T. 2011. Balance of nitrogen in integrated and ecological farming system on soil [in Slovak: Bilancia dusíka v integrovanom a ekologickom systéme hospodárenia na pôde]. Agrochémia, 51(3): 7–11.
18. KRIŠTOF, K., ŠIMA, T., NOZDROVICKÝ, L. and FINDURA, P. 2014. The effect of soil tillage intensity on carbon dioxide emissions released from soil into the atmosphere. Agronomy Research, 12(1): 115-120.
19. LIN, S., IQBAL, J., HU, R. G. and FENG, M. L. 2010. N2O emissions from different land uses in mid‑subtropical China. Agriculture, Ecosystems & Environment, 136: 40–48. <https://doi.org/10.1016/j.agee.2009.11.005>
20. LOUBET, B., LAVILLE, P., LEHUGER, S., LARMANOU, E., FLÉCHARD, C., MASCHER, N., GENERMONT, S., ROCHE, R., FERRARA, R. M., STELLA, P., PERSONNE, E., DURAND, B., DECUQ, C., FLURA, D., MASSON, S., FANUCCI, O., RAMPON, J.-N., SIEMENS, J., KINDLER, R., GABRIELLE, B., SCHRUMPF, M. and CELLIER, P. 2011. Carbon, nitrogen and Greenhouse gases budgets over a four years crop rotation in northern France. Plant and Soil, 343(1-2): 109–137. <https://doi.org/10.1007/s11104-011-0751-9>
21. LUDWIG, B., JÄGER, N., PRIESACK, E. and FLESSA, H. 2011. Application of the DNDC model to predict N2O emissions from sandy arable soils with differing fertilization in a long-term experiment. Journal of Plant Nutrition and Soil Science, 174: 350–358. <https://doi.org/10.1002/jpln.201000040>
22. MACÁK, M. and KRIŠTOF, K. 2016. The effect of granulometric structure and moisture of fertilizer on its static strength. Research in Agricultural Engineering, 62: S34–S43.
23. MAPANDA, F., WUTA, M., NYAMANGARA, J. and REES, R. M. 2011. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant and Soil, 343(1 – 2): 67–81. <https://doi.org/10.1007/s11104-011-0753-7>
24. MIAO, Y., STEWART, B. A. and ZHANG, F. 2011. Long-term experiments for sustainable nutrient management in China. A review. Agronomy for Sustainable Development, 31(2): 397–414. <https://doi.org/10.1051/agro/2010034>
25. OLIESLAGERS, R., RAMON, H. and DE BAERDEMAEKER, J. 1996. Calculation of fertilizer distribution patterns from a spinning disc spreader by means of a simulation model. Journal of Agricultural Engineering Research, 63(2): 137–152. <https://doi.org/10.1006/jaer.1996.0016>
26. PANG, X. B., MU, Y. J., LEE, X. Q., FANG, S. X., YUAN, J. and HUANG, D. K., 2009. Nitric oxides and nitrous oxide fluxes from typical vegetables cropland in China: Effects of canopy, soil properties and field management. Atmospheric Environment, 43: 2571–2578. <https://doi.org/10.1016/j.atmosenv.2009.02.016>
27. PARISH, R.L. 2002. Rate setting effects on fertilizer spreader distribution patterns. Applied Engineering in Agriculture, 18(3): 301–304.
28. PFAB, H., PALMER, I., BUEGGER, F., FIEDLER, F., MÜLLER, T. and RUSER, R. 2012. Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agriculture, Ecosystems & Environment, 150: 91–101. <https://doi.org/10.1016/j.agee.2012.01.001>
29. RAMIREZ, K. S., CRAINE, J. M. and FIERER, N. 2010. Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biology and Biochemistry, 42(12): 2336–2338. <https://doi.org/10.1016/j.soilbio.2010.08.032>
30. RANUCCI, S., BERTOLINI, T., VITALE, L., DI TOMMASI, P., OTTAIANO, L., OLIVA, M., AMATO, U., FIERRO, A. and MAGLIULO, V. 2011. The influence of management and environmental variables on soil N2O emissions in a crop system in Southern Italy. Plant and Soil, 343(1 – 2): 83–96. <https://doi.org/10.1007/s11104-010-0674-x>
31. RAVISHANKARA, A. R., DANIEL, J. S. and PORTMANN, R. W. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949): 123–125. <https://doi.org/10.1126/science.1176985>
32. RUSER, R., FLESSA, H., SCHILLING, R., BEESE, F., MUNCH, J. C. 2001. Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems, 59(2): 177–191. <https://doi.org/10.1023/A:1017512205888>
33. SENBAYRAM, M., CHEN, R., BUDAI, A., BAKKEN, L. and DITTERT, K. 2012. N2O emissions and the N2O / (N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems & Environment, 147: 4–12. <https://doi.org/10.1016/j.agee.2011.06.022>
34. SKIBA, U., SMITH, K. A. and FOWLER, D. 1993. Nitrification and denitrification as sources on nitric oxide and nitrous oxide in a sandy loam soil. Soil Biology and Biochemistry, 25(11): 1527–1536. <https://doi.org/10.1016/0038-0717(93)90007-X>
35. SKIBA, U., FOWLER, D. and SMITH, K. A. 1997. Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, control and mitigation options. Nutrient Cycling in Agroecosystems, 48: 75–90. <https://doi.org/10.1023/A:1009734514983>
36. SKIBA, U. and SMITH, K. A. 2000. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere, 2: 379–386.
37. SKIBA, U., SOZANSKA, M., METCALFE, S. and FOWLER, D. 2001. Spatially disaggregated inventories of soil NO and N2O emissions for Great Britain. Water, Air and Soil Pollution, 1(5 – 6): 109–118. <https://doi.org/10.1023/A:1013178316774>
38. ŠIMA, T. 2014. Research of the environmental effects of the fertilizer spreader work quality. PhD thesis. Nitra: SUA in Nitra.
39. ŠIMA, T., NOZDROVICKÝ, L., KRIŠTOF, K., DUBEŇOVÁ, M., KRUPIČKA, J. and KRÁLIK, S. 2012. Method for measuring of N2O emissions from fertilized soil after the using of fertilizer spreader. Poljoprivredna tehnika, 37: 51–60.
40. ŠIMA, T., KRIŠTOF, K., DUBEŇOVÁ, M., NOZDROVICKÝ, L., KRUPIČKA, J. and CHYBA, J. 2013a. Sampling probe for field measurement of emissions reselased from soil into the atmosphere [in Czech: Sonda na polní měření emisí uvolňovaných z půdy do atmosféry]. Utility pattern No. 25289. Prague: Industrial Property Office, 2013. 2 p.
41. ŠIMA, T., KRIŠTOF, K., DUBEŇOVÁ, M., NOZDROVICKÝ, L., KRUPIČKA, J. and CHYBA, J. 2013b. Sampling probe for field measurement of emissions released from soil into the atmosphere [in Czech: Odběrná sonda na laboratorní měření emisí uvoľňovaných z půdy do atmosféry]. Utility pattern No. 25348, Prague, Industrial Property Office, 2013. 2 p.
42. ŠIMA, T., NOZDROVICKÝ, L., KRIŠTOF, K., DUBEŇOVÁ, M. and KRUPIČKA, J. 2014a. Impact of the quality of work of fertiliser spreader on nitrous oxide emissions released from soil to the atmosphere. Agronomy Research, 12(1): 171–178.
43. ŠIMA, T., NOZDROVICKÝ, L., KRIŠTOF, K. and KRUPIČKA, J. 2014b. Impact of the size of nitrogen fertiliser application rate on N2O flux. Research in Agricultural Engineering, 60(1): 24–29. <https://doi.org/10.17221/81/2012-RAE>
44. VAN CLEEMPUT, O. and SAMATER, A. H. 1996. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertilizer Research, 45(1): 81–89. <https://doi.org/10.1007/BF00749884>
45. VERMA, A., TYAGI, L., YADAV, S. and SINGH, S.N. 2006. Temporal changes in N2O efflux from cropped and fallow agricultural fields. Agriculture, Ecosystems & Environment, 116: 209–215. <https://doi.org/10.1016/j.agee.2006.02.005>
46. VIRK, S. S., MULLENIX, D. K., SHARDA, A., HALL, J. B., WOOD, C. W., FASINA, O. O., MCDONALD, T. P., PATE, G. L. and FULTON, J. P. 2013. Case study: Distribution uniformity of a blended fertilizer applied using a variable-rate spinner-disc spreader. Applied Engineering in Agriculture, 29(5): 627–636.
47. WALTERS, R .W., JENQ, R. R. and HALL, S. B. 2000. Evaluating farmer defined management zone maps for variable rate fertilizer application. Precision Agriculture, 2(2): 201–215.
48. WILLIAMS, E. J., HUTCHINSON, G. L. and FEHSENFELD, F.C. 1992. NOx and N2O emissions from soil. Global Biogeochemical Cycles, 6(4): 351–388. <https://doi.org/10.1029/92GB02124>
49. ZHU, T., ZHANG, J. and CAI, Z. 2011. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant and Soil, 343(1): 313–327. <https://doi.org/10.1007/s11104-011-0720-3>
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive