Acta Univ. Agric. Silvic. Mendelianae Brun. 2018, 66, 111-118

https://doi.org/10.11118/actaun201866010111
Published online 2018-02-28

Phosphorus Availability and Spring Barley Yields Under Graded P-Doses in a Pot Experiment

Gabriela Mühlbachová1, Pavel Čermák1, Radek Vavera1, Martin Káš1, Miroslava Pechová1, Kateřina Marková1, Jaroslav Hlušek2, Tomáš Lošák2

1Crop Research Institute, Drnovská 507/73, Prague 6, CZ-161 06, Czech Republic
2Mendel University in Brno, Faculty of Regional Development and International Studies, Zemědělská 1/1665, Brno CZ-613 00, Czech Republic

References

1. BLAKE. L., MERCIK, S., KÖRSCHENS, M., MOSKAL, S., POULTON, P. R., GOULDING, K. W. T., WEIGEL, A. and POWLSON, D. S. 2000. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutrient Cycling in Agroecosystems, 56(3): 263–275. <https://doi.org/10.1023/A:1009841603931>
2. ČERMÁK, P., LOŠÁK, T. and HLUŠEK, J. 2014. Fertilization level and available nutrients content in arable land of the Czech Republic. In: Proceedings of 9th International Soil Science Congress on The soul of soil and civilization. Antalya, Turkey.
3. DAVIES, M. J., ATKINSON, C. J., BURNS, C., ARROO, R. and WOOLLEY, J. 2011. Increases in leaf artemisinin concentration in Artemisia annua in response to the application of phosphorus and boron. Industrial Crops and Products, 34: 1465–1473. <https://doi.org/10.1016/j.indcrop.2011.05.002>
4. FECENKO, J. and LOŽEK, O. 2000. Výživa a hnojenie polných plodín. SPU v Nitre a Duslo Šala.
5. HOLFORD, I. C. R. 1997. Soil phosphorus: Its measurement, and its uptake by plants. Australian Journal of Soil Research, 35(2): 227–239. <https://doi.org/10.1071/S96047>
6. HOPPO, S. D., ELLIOT, D. E. and REUTER, D. J. 1999. Plant tests for diagnosing phosphorus deficiency in barley (Hordeum vulgare L.). Australian Journal of Experimental Agriculture, 39(7): 857–872. <https://doi.org/10.1071/EA99029>
7. JONES, C. A., COLE, C. V., SHARPLEY, A. N. and WILLIAMS, J. R. 1984. A simplified soil and plant phosphorus model. I. Documentation. Soil Science Society of America Journal, 48(4): 800–805. <https://doi.org/10.2136/sssaj1984.03615995004800040020x>
8. KÁŠ, M., MÜHLBACHOVÁ, G., KUSÁ, H. and PECHOVÁ, M. 2016. Soil phosphorus and potassium availability in long-term field experiments with organic and mineral fertilization. Plant, Soil and Environment, 62(12): 558–565. <https://doi.org/10.17221/534/2016-PSE>
9. KULHÁNEK, M., BALÍK, J., ČERNÝ, J. and VANĚK, V. 2009. Evaluation of phosphorus mobility in soil using different extraction methods. Plant, Soil and Environment, 55(5): 181–186. <https://doi.org/10.17221/43/2009-PSE>
10. LÁSZTITY, B. and CSATHÓ, P. 1995. Studies on the effect of NPK fertilization in long-term experiments on pseudomyceliar chernozem soil in the Mezöföld region. Agrochemistry and Soil Science, 44: 47–62.
11. LOŠÁK, T., HLUŠEK, J., LAMPARTOVÁ, I., ELBL, J., MÜHLBACHOVÁ, G., ČERMÁK, P. and ANTONKIEWICZ, J. 2016. Changes in the Content of Soil Phosphorus after its Application into Chernozem and Haplic Luvisol and the Effect on Yields of Barley Biomass. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(5): 1603–1608. <https://doi.org/10.11118/actaun201664051603>
12. MATULA, J. 2007. Optimization of nutrient status of soils by KVK-UF soil test. Methodology for praxis. Prague, Czech Republic: Crop research Institute.
13. MATULA, J. 2009. A relationship between multi-nutrient soil tests (Mehlich 3, ammonium acetate, and water extraction) and bioavailability of nutrients from soils for barely, Plant, Soil and Environment, 55(4): 173–180. <https://doi.org/10.17221/29/2009-PSE>
14. MATULA, J. 2010. Differences in available phosphorus evaluated by soil tests in relation to detection by colorimetric and ICP-AES techniques. Plant, Soil and Environment, 56(6): 297–304. <https://doi.org/10.17221/23/2010-PSE>
15. MCKENZIE R. H, MIDDLETON A., SOLBERG E., DEMULDER J. and NAJDA H. 1998. Nitrogen and phosphorus optimizme barley silage production. Better Crops, 82(4): 22–23.
16. MEHLICH, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15(12): 1409–1416. <https://doi.org/10.1080/00103628409367568>
17. MOHAMMAD, M. J., MALKAWI, H. I. and SHIBLI, R. 2003. Effects of Arbuscular Mycorrhizal Fungi and Phosphorus Fertilization on Growth and Nutrient Uptake of Barley Grown on Soils with Different Levels of Salts. Journal of Plant Nutrition, 26: 125–137. <https://doi.org/10.1081/PLN-120016500>
18. MÜHLBACHOVÁ, G., ČERMÁK, P., VAVERA, LOŠÁK, T. and HLUŠEK, J., 2016. The effect of phosphorus applications on changes in the soil content of P and yields of barley biomass. Agriculture and Food, 4: 564–570.
19. MÜHLBACHOVÁ, G., ČERMÁK, P., VAVERA, R., KÁŠ, M., PECHOVÁ, M., MARKOVÁ, K., KUSÁ H., RŮŽEK, P., HLUŠEK, J. and LOŠÁK, T. 2017. Boron availability and uptake under increasing phosphorus rates in a pot experiment. Plant, Soil and Environment, 63(11): 483–490.
20. NYBORG, M., MALHI, S. S., MUMEY, G., PENNEY, D. C. and LAVERTY, D. H. 1999. Economics of phosphorus fertilization of barley as influenced by concentration of extractable phosphorus in soil. Communications in Soil Science and Plant Analysis, 30(11-12): 1789–1795. <https://doi.org/10.1080/00103629909370330>
21. PRYSTUPA, P., SAVIN, R. and SLAFER, G. A. 2004, Grain number and its relationship with dry matter, N and P in the spikes at fading in response to N x P fertilization in barely. Field Crops Research, 90(2-3): 245–254. <https://doi.org/10.1016/j.fcr.2004.03.001>
22. ROWE, B. A. and JOHNSON, D. E. 1995. Residual benefits of limestone and superphosphate on barley yields and soil-water deficits on a krasnozem in north-western Tasmania. Australian Journal of Experimental Agriculture, 35(5): 611–617. <https://doi.org/10.1071/EA9950611>
23. SANCHEZ, C. A. 2007. Phosphorus. In: BARKER, A. V. and PILBEAM, D. J. (Eds.). Handbook of Plant Nutrition. Boca Raton: Taylor and Francis, pp. 51–90.
24. TAKAHASHI, S. and ANWAR, R. 2007. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol. Field Crops Research, 101(2): 160–171. <https://doi.org/10.1016/j.fcr.2006.11.003>
25. USHERWOOD, N. R. and SEGARS, W. I. 2001. Nitrogen interactions with phosphorus and potassium for optimum crop yield, nitrogen use effectiveness, and environmental stewardship. The Scientific World Journal, 1: 57–60. <https://doi.org/10.1100/tsw.2001.97>
26. ZBÍRAL J., ČIŽMÁROVÁ E., OBDRŽÁLKOVÁ E., RYCHLÝ M., VILAMOVÁ V., SRNKOVÁ J. and ŽALMANOVÁ A. 2016. Uniform working procedures. Soil analysis I [in Czech: Jednotné pracovní postupy. Analýza půd I]. 4th Edition. Brno: Central Institute for Supervising and Testing in Agriculture.
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive