Acta Univ. Agric. Silvic. Mendelianae Brun. 2017, 65, 699-708

https://doi.org/10.11118/actaun201765020699
Published online 2017-04-30

Hybrid ARIMA and Support Vector Regression in Short‑term Electricity Price Forecasting

Jindřich Pokora

Department of Corporate Economy, Faculty of Economics and Administration, Masaryk university, Lipová 41a, 602 00 Brno, Czech Republic

References

1. BASAK, D., PAL, S. and PATRANABIS, D. C. 2007. Support vector regression. Neural Information Processing‑Letters and Reviews, 11(10): 203 – 224.
2. BOSCO, B., PARISIO, L., PELAGATTI, et al. 2010. Long‑Run Relations in European Electricity Prices. Journal of Applied Econometrics, 25(5): 805 – 832. <https://doi.org/10.1002/jae.1095>
3. CHAABANE, N. 2014. A novel auto‑regressive fractionally integrated moving average‑least‑squares support vector machine model for electricity spot prices prediction. Journal of Applied Statistics, 41(3): 635 – 651. <https://doi.org/10.1080/02664763.2013.847068>
4. CHE, J. and WANG, J. 2010. Short‑term electricity prices forecasting based on support vector regression and Auto‑regressive integrated moving average modeling. Energy Conversion and Management, 51(10): 1911 – 1917. <https://doi.org/10.1016/j.enconman.2010.02.023>
5. CHRISTMANN, A. and STEINWART, I. 2007. Consistency and robustness of kernel‑based regression in convex risk minimization. Bernoulli, 13(3): 799 – 819. <https://doi.org/10.3150/07-BEJ5102>
6. CLEVELAND, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American statistical association, 74(368), 829 – 836. <https://doi.org/10.1080/01621459.1979.10481038>
7. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, et al. 1990. STL: A seasonal‑trend decomposition procedure based on loess. Journal of Official Statistics, 6(1): 3 – 73.
8. CUARESMA, J. C., HLOUSKOVA, J., KOSSMEIER, et al. 2004. Forecasting electricity spot‑prices using linear univariate time‑series models. Applied Energy, 77(1): 87 – 106. <https://doi.org/10.1016/S0306-2619(03)00096-5>
9. HYNDMAN, R. J. and KHANDAKAR, Y. 2008. Automatic time series for forecasting: the forecast package for R. Journal of Statistical Software, 27(3): 1 – 22. [Online]. Available at: https://www.jstatsoft.org/article/view/v027i03/v27i03.pdf [Accessed: 2017, January 15] <https://doi.org/10.18637/jss.v027.i03>
10. HYNDMAN, R. J. and KOEHLER, A. B. 2006. Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679 – 688. <https://doi.org/10.1016/j.ijforecast.2006.03.001>
11. HYNDMAN R. J. 2016. Forecast: Forecasting functions for time series and linear models. R package version 7.3.
12. KARAKATSANI, N. V. and BUNN, D. W. 2008. Forecasting electricity prices: The impact of fundamentals and time‑varying coefficients. International Journal of Forecasting, 24(4): 764 – 785. <https://doi.org/10.1016/j.ijforecast.2008.09.008>
13. KAVOUSI‑FARD, A. and KAVOUSI‑FARD, F. 2013. A new hybrid correction method for short‑term load forecasting based on ARIMA, SVR and CSA. Journal of Experimental & Theoretical Artificial Intelligence, 25(4): 559 – 574. <https://doi.org/10.1080/0952813X.2013.782351>
14. KHASHEI, M. and BIJARI, M. 2010. An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with Applications, 37(1): 479 – 489. <https://doi.org/10.1016/j.eswa.2009.05.044>
15. KRISTIANSEN, T. 2014. A time series spot price forecast model for the Nord Pool market. International Journal of Electrical Power & Energy Systems, 61: 20 – 26. <https://doi.org/10.1016/j.ijepes.2014.03.007>
16. LOLAND, A., FERKINGSTAD, E. and WILHELMSEN, M. 2012. Forecasting Transmission Congestion. Journal of Energy Markets, 5(3): 65 – 83. <https://doi.org/10.21314/JEM.2012.078>
17. MEYER D., DIMITRADOU E., HORNIK K. et al. 2015. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6.
18. PAI, P. F. and LIN, C. S. 2005. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega‑International Journal of Management Science, 33(6): 497 – 505 <https://doi.org/10.1016/j.omega.2004.07.024>
19. R CORE TEAM. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: the R Foundation for Statistical Computing. [Online]. Available at: https://www.R‑project.org/ [Accessed: 2017, January 15].
20. SALEH, S., MOHAMMADI, S., ROSTAMI, et al. 2014. A hybrid artificial‑based model for accurate short term electric load prediction. Journal of Intelligent & Fuzzy Systems, 27(6): 3103 – 3110.
21. VAPNIK, V., GOLOWICH, S. E. and SMOLA, A. 1997. Support vector method for function approximation, regression estimation, and signal processing. In: MOZER, M., JORDAN, M. and PETSCHE, T. Eds. Advances in neural information processing systems 9. Cambridge, MA: MIT Press, 281 – 287.
22. VENTOSA, M., BAILLO, A., RAMOS, et al. 2005. Electricity market modeling trends. Energy Policy, 33(7): 897 – 913. <https://doi.org/10.1016/j.enpol.2003.10.013>
23. WERON, R. 2014. Electricity price forecasting: A review of the state‑of‑the‑art with a look into the future. International Journal of Forecasting, 30(4): 1030 – 1081. <https://doi.org/10.1016/j.ijforecast.2014.08.008>
24. WERON, R. and MISIOREK, A. 2005. Forecasting spot electricity prices with time series models. In: IEEE Conference Proceedings – EEM05. European Electricity Market Conference EEMO5, Lodz, Poland, May 10 – 12, 2005.
25. YAN, X. and CHOWDHURY, N. A. 2013. Mid‑term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach. International Journal of Electrical Power & Energy Systems, 53: 20 – 26. <https://doi.org/10.1016/j.ijepes.2013.04.006>
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive