Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63, 1789-1801

https://doi.org/10.11118/actaun201563051789
Published online 2015-10-29

An Inventory of Tree and Stand Growth Empirical Modelling Approaches with Potential Application in Coppice Forestry (a Review)

Michal Kneifl1, Jan Kadavý1, Robert Knott2, Zdeněk Adamec1, Karel Drápela1

1Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
2Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

References

1. ADAME, P., HYNYNEN, J., CAÑELLAS, I. and DEL RÍO, M. 2008. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. Forest Ecology and Management, 255(3–4): 1011–1022. <https://doi.org/10.1016/j.foreco.2007.10.019>
2. ADAME, P., RÌO, M. D. and CAÑELLAS, I. 2010. Ingrowth model for pyrenean oak stands in north-western Spain using continuous forest inventory data. European Journal of Forest Research, 129(4): 669–678. <https://doi.org/10.1007/s10342-010-0368-1>
3. AOSAAR, J., VARIK, M. and URI, V. 2012. Biomass production potential of grey alder (Alnus incana (L.) Moench.) in Scandinavia and Eastern Europe: A review. Biomass and Bioenergy, 45: 11–26. <https://doi.org/10.1016/j.biombioe.2012.05.013>
4. ARNEY, J. D. 1972. Computer simulation of Douglas-fir tree and stand growth. Oregon: Oregon State University.
5. ASH, J. E. and BARKHAM, J. P. 1976. Changes and Variability in the Field Layer of a Coppiced Woodland in Norfolk, England. Journal of Ecology, 64(2): 697–712. <https://doi.org/10.2307/2258779>
6. BEKY, A. 1991. Yield of sessile oak coppice stands (Quercus petraea). Erdeszeti-Kutatasok, 82–83: 176–192.
7. BÖHM, C., QUINKENSTEIN, A. and FREESE, D. 2011. Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Annals of Forest Research, 54(2): 215–227.
8. BRUCE, D., MARS DE, D. J. and REUKEMA, D. C. 1977. Douglas-fir managed yield simulator: DFIT User’s Guide. Portland: PNW Forest and Range Experiment Station.
9. BUCKLEY, G. 1992. Ecology and Management of Coppice Woodlands. London: Chapman-Hall.
10. BUFKA, A. 2012. Prices of solid fuels for household [in Czech: Ceny pevných paliv pro domácnosti]. Praha: Ministerstvo průmyslu a obchodu ČR.
11. CAÑELLAS, I., DEL RIO, M., ROIG, S. and MONTERO, G. 2004. Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Annals of Forest Science, 61(3): 243–250. <https://doi.org/10.1051/forest:2004017>
12. CAÑELLAS, I., HUELIN, P., HERNÁNDEZ, M., CIRIA, P., CALVO, R., GEA-IZQUIERDO, G. and SIXTO H. 2012. The effect of density on short rotation Populus sp. plantations in the Mediterranean area. Biomass and Bioenergy, 46: 645–652. <https://doi.org/10.1016/j.biombioe.2012.06.032>
13. CANDY, S. G. 1997. Growth and yield models for Eucalyptus nitens plantations in Tasmania and New Zealand. Tasforests, 9: 167–198.
14. CASTELL, C., TERRADAS, J. and TENHUNEN, J. D. 1994. Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia, 98(2): 201–211. <https://doi.org/10.1007/BF00341473>
15. CASTELLANI, C. 1982. Stereometric and allometric tables built for Italian forests [in Italian: Tavole stereometriche ed alsometriche costruite per boschi italiani]. Trento: Annali dell’Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura.
16. CABRERA, M. and OCHOA, B. 1997. Yield tables of chestnut (Castanea sativa Mill.) coppices in Asturias [in Spanish: Tabla de produccion de castafio (Castanea sativa Mill.) tratado a Monte bajo en Asturias]. Actas del II Congreso Forestal Espańol, 4: 131–136.
17. CEULEMANS, R. 1996. An inventory of tree and stand growth models with potential application in short-rotation forestry. Biomass and Bioenergy, 11(2/3): 95–107. <https://doi.org/10.1016/0961-9534(96)00018-9>
18. CEULEMANS, R., MCDONALD, A. J. S. and PEREIRA, J. S. 1996. A comparison among eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-modelling approach. Biomass and Bioenergy, 11(2/3): 215–231. <https://doi.org/10.1016/0961-9534(96)00035-9>
19. CHATZIPHILIPPIDIS, G. and SPYROGLOU, G. 2006. Modelling the Growth of Quercus frainetto in Greece. In: HASENAUER, H. (ed.), Sustainable Forest Management. Berlin: Springer-Verlag, 373–395.
20. COVONE, F. and GRATANI, L. 2006. Age-related physiological and structural traits of chestnut coppices at the Castelli Romani Park (Italy). Annals of Forest Science, 63(3): 239–247. <https://doi.org/10.1051/forest:2006002>
21. CROCKFORD, K. J. and SAVILL, P. S. 1991. Preliminary Yield Tables for Oak Coppice. Forestry, 64(1): 29–49. <https://doi.org/10.1093/forestry/64.1.29>
22. CROMBIE, D. 1997. Water relations of jarrah (Eucalyptus marginata) regeneration from the seedling to the mature tree and of stump coppice. Forest Ecology and Management, 97(3): 293–303. <https://doi.org/10.1016/S0378-1127(97)00074-1>
23. CURTIS, R. O., CLENDENEN, G. W. and MARS DE, D. J. 1981. A new stand simulator for coast Douglas-fir: DFSIM User’s guide. Portland, PNW Forest and Range Experiment Station.
24. CUTINI, A. 2001. New management options in chestnut coppices: an evaluation on ecological bases. Forest Ecology and Management, 141(3): 165–174. <https://doi.org/10.1016/S0378-1127(00)00326-1>
25. DAMESIN, C. and RAMBAL, S. 1995. Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought. New Phytologist, 131(2): 159–167.
26. DAMESIN, C., RAMBAL, S. and JOFFRE, R. 1998. Co-occurrence of trees with different leaf habit: A functional approach on Mediterranean oaks. Acta Oecologica, 19(3): 195–204. <https://doi.org/10.1016/S1146-609X(98)80024-6>
27. DICKMANN, D. 2006. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass and Bioenergy, 30(8–9): 696–705. <https://doi.org/10.1016/j.biombioe.2005.02.008>
28. DIMITROV, E. P. and STIPTSOV, V. 1991. Yield table for coppice stands of Quercus cerris in Bulgaria. Gorsko Stopanstvo, 47(5–6): 13–14.
29. DIXON, G. E., STAGE, A. R., CROOKSTON, N. L., MONSERUD, R. A., MOEUR, M., FERGUSON, D., WYKOFF, W. R. and HAMILTON, D. A. J. 2002. Essential FVS: A user’s guide to the Forest Vegetation Simulator. Fort Collins, Forest Service, Forest Management Service Center.
30. DUCREY, M. and BOISSERIE, M. 1992. Natural regrowth of holm oak coppice (Quercus ilex L.) following partial cuts [in French: Recrű naturel dans des taillis de chęne vert (Quercus ilex L.) á la suite d’exploitations partielles]. Annales des Sciences Forestiéres, 49(2): 91–109. <https://doi.org/10.1051/forest:19920202>
31. DUCREY, M. and TOTH, J. 1992. Effect of cleaning and thinning on height growth and girth increment in holm oak coppices (Quercus ilex L.). Vegetatio, 99–100(1): 365–376. <https://doi.org/10.1007/BF00118243>
32. EK, A. R. and MONSERUD, R. A. 1974. Trials with program FOREST: growth and reproduction simulation for mixed species even- or uneven-aged forest stands. In: FRIES, J. (ed.), Growth models for tree and stand simulation. Stockholm: Royal College of Forestry, 56–73.
33. EVANS, J. 1992. Coppice forestry – an overview. In: BUCKLEY, G. (ed.), Ecology and Management of Coppice Woodlands. Dordrecht, Springer, 18–27.
34. FABRIKA, M. 2005. Forest biodynamic simulator SIBYLA, conception, construction and program solution [in Slovak: Simulátor biodynamiky lesa SIBYLA, koncepcia, konštrukcia a programové riešenie]. Zvolen: Technická univerzita Zvolen.
35. FANG, S., XU, X., LU, S. and TANG, L. 1999. Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass and Bioenergy, 17(5): 415–425. <https://doi.org/10.1016/S0961-9534(99)00060-4>
36. FEISTMANTEL, R. 1854. General volume and yield tables, or overview of the most important growth and yield circumstances of forests [in German: Allgemeine Waldbestandestafeln, oder, Übersichtliche Darstellung der vorzüglichsten Wachsthums- und Holzertrags-Verhältnisse der Forste]. Wien: Wilhelm Braumühler.
37. FEKETE, Z. 1946. Production and stand structure of domestic oak forests [in Hungarian: Fatermelési és faállományszerkezeti vizsgálatok a hazai tölgyesekben]. Sopron: Röttig-Romwalter Nyomda.
38. GARCÍA, O. and RUIZ, F. 2003. A growth model for eucalypt in Galicia, Spain. Forest Ecology and Management, 173(1–3): 49–62. <https://doi.org/10.1016/S0378-1127(01)00817-9>
39. GAUTAM, S., PIETSCH, S. A. and HASENAUER, H. 2010. Modelling Thinning Response in Coppice versus High Oak Forests in Austria. Austrian Journal of Forest Science, 127(3–4): 179–201.
40. GIOVANNINI, G., PERULLI, D., PIUSSI, P. and SALBITANO, F. 1992. Ecology of vegetative regeneration after coppicing in macchia stands in central Italy. Vegetatio, 99–100(1): 331–343. <https://doi.org/10.1007/BF00118240>
41. GIUDICI, F. and ZINGG, A. 2005. Sprouting ability and mortality of chestnut (Castanea sativa Mill.) after coppicing. A case study. Annals of Forest Science, 62(6): 513–523. <https://doi.org/10.1051/forest:2005056>
42. GONDARD, H. and ROMANE, F. 2005. Long-term evolution of understorey plant species composition after logging in chestnut coppice stands (Cevennes Mountains, southern France). Annals of Forest Science, 62(4): 333–342. <https://doi.org/10.1051/forest:2005028>
43. GONDARD, H., ROMANE, F., GRANDJANNY, M., LI, J. and ARONSON, J. 2001. Plant species diversity changes in abandoned chestnut (Castanea sativa) groves in southern France. Biodiversity and Conservation, 10(2): 189–207. <https://doi.org/10.1023/A:1008997625523>
44. GONDARD, H., ROMANE, F., REGINA, I. S. and LEONARDI, S. 2006. Forest Management and Plant Species Diversity in Chestnut Stands of Three Mediterranean Areas. Biodiversity and Conservation, 15(4): 1129–1142. <https://doi.org/10.1007/s10531-004-3103-8>
45. GOULD, P. J., FEI, S. and STEINER, K. C. 2007. Modeling sprout-origin oak regeneration in the central Appalachians. Canadian Journal of Forest Research, 37(1): 170–177. <https://doi.org/10.1139/x06-206>
46. GROOS, R. 1953. Oak coppice. A yield survey [in German: Der Eichenausschlagwald. Eine ertragskundliche Untersuchung]. Allgemeine Forst und Jagdzeitung, 124: 189–208.
47. HARMER, R. and HOWE, J. 2003. The Silviculture and Management of Coppice Woodlands. Bristol: Forestry Commission.
48. HASENAUER, H. 1994. A single-tree growth simulator for uneven aged spruce-pine and beach-spruce mixed stands [in German: Ein Einzelbaumwachstumssimulator für ungleichaltrige Fichten-Kiefern- und Buchen-Fichtenmischbestände]. Wien: Universität für Bodenkultur.
49. HASENAUER, H., KINDERMANN, G. and STEINMETZ, P. 2006. The Tree Growth Model MOSES 3.0. In: HASENAUER, H. (ed.), Sustainable Forest Management. Berlin: Springer-Verlag, 64–70.
50. HASENAUER, H. E. 2006. Sustainable Forest Management: Growth models for Europe. Berlin: Springer-Verlag.
51. HOCHBICHLER, E. 1993. Methods of oak silviculture in Austria. Annals of Forest Science, 50(6): 583–591. <https://doi.org/10.1051/forest:19930607>
52. HOFF, C., RAMBAL, S. and JOFFRE, R. 2002. Simulating carbon and water flows and growth in a Mediterranean evergreen Quercus ilex coppice using the FOREST-BGC model. Forest Ecology and Management, 164(1–3): 121–136. <https://doi.org/10.1016/S0378-1127(01)00605-3>
53. ISEBRANDS, J. G., HOST, G., BOLLMARK, L., PORTER, J., PHILIPPOT, S., STEVENS, E. and RUSHTON, K. 1996. A strategy for process modelling of short-rotation Salix coppice plantations. Biomass and Bioenergy, 11(2/3): 245–252. <https://doi.org/10.1016/0961-9534(96)82538-4>
54. JEBARAJ, S. and INIYAN, S. 2006. A review of energy models. Renewable and Sustainable Energy Reviews, 10(4): 281–311. <https://doi.org/10.1016/j.rser.2004.09.004>
55. JOFFRE, R., RAMBAL, S. and ROMANE, F. 1996. Local variations of ecosystem functions in Mediterranean evergreen oak woodland. Annales des Sciences Forestieres, 53(2–3): 561–570. <https://doi.org/10.1051/forest:19960235>
56. JOHNSON, P. S. 1977. Predicting oak stump sprouting and sprout development in the Missouri Ozarks. St. Paul, Forest Service, North Central Forest Experiment Station.
57. KADAVÝ, J., KNEIFL, M. and KNOTT, R. 2011. Establishment and selected characteristics of the Hády coppice and coppice-with-standards research plot (TARMAG I). Journal of Forest Science, 57(10): 451–458. <https://doi.org/10.17221/3233-JFS>
58. KORSUŇ, F. 1947. Yield tables for locust [in Czech: Taxační tabulky pro akát]. Lesnická práce, 26(10): 305–322.
59. KORSUŇ, F. 1954. The life of oak coppices in figures [in Czech: Život dubových pařezin v číslicích]. Práce výzkumných ústavů lesnických ČSR, 6: 154–169.
60. KORSUŇ, F. 1966. Volume and yield tables for alder [in Czech: Hmotové a porostní tabulky pro olši]. Lesnický časopis, 12(9): 839–856.
61. KORSUŇ, F. 1969. Volume and yield tables for hornbeam [in Czech: Hmotové a porostní tabulky pro habr]. Lesnictví, 15(3): 217–230.
62. LEDERMANN, T. 2006. Description of PrognAus for Windows 2.2. In: HASENAUER, H. (ed.), Sustainable Forest Management. Berlin: Springer-Verlag, 71–78.
63. LEE, Y. 1967. Stand models for lodgepole pine and limits to their application. Vancouver: University of British Columbia.
64. LOGLI, F. and JOFFRE, R. 2001. Individual variability as related to stand structure and soil condition in a Mediterranean oak coppice. Forest Ecology and Management, 142(1–3): 53–63. <https://doi.org/10.1016/S0378-1127(00)00339-X>
65. MARZILIANO, P., IOVINO, F., MENGUZZATO, G., SCALISE, C. and NICOLACI, A. 2013. Growth and yield models, assortment type and analysis of deadwood in chestnut coppice. Forest@, 10(2): 14–25. <https://doi.org/10.3832/efor0839-0010>
66. MATULA, R., SVÁTEK, M., KŮROVÁ, J., URADNÍČEK, L., KADAVÝ, J. and KNEIFL, M. 2012. The sprouting ability of the main tree species in Central European coppices: implications for coppice restoration. European Journal of Forest Research, 131(5): 1501–1511. <https://doi.org/10.1007/s10342-012-0618-5>
67. MENÉNDEZ-MIGUÉLEZ, M., CANGA, E., BARRIO-ANTA, M., MAJADA, J. and ÁLVAREZ- ÁLVAREZ, P. 2013. A three level system for estimating the biomass of Castanea sativa Mill. coppice stands in north-west Spain. Forest Ecology and Management, 291: 417–426. <https://doi.org/10.1016/j.foreco.2012.11.040>
68. MILLER, P. M. and KAUFFMAN, J. B. 1998. Seedling and Sprout Response to Slash-and Burn Agriculture in a Tropical Deciduous Forest. Biotropica, 30(4): 538–546. <https://doi.org/10.1111/j.1744-7429.1998.tb00094.x>
69. MONSERUD, R. A. 2003. Evaluating Forest Models in a Sustainable Forest Management Context. Forest Biometry, Modelling and Information Science, 1: 35–47.
70. MOREIRA, F., CATRY, F., DUARTE, I., ACÁCIO, V. and SILVA J. S. 2008. A conceptual model of sprouting responses in relation to fire damage: an example with cork oak (Quercus suber L.) trees in Southern Portugal. Plant Ecology, 201(1): 77–85. <https://doi.org/10.1007/s11258-008-9476-0>
71. MURPHY, L. 2012. SORTIE-ND User Manual Version 7.01 Beta. Milbrook: Cary Institute of Ecosystem Studies.
72. NACHTMANN, G. 2011. A semi-distance-dependent individual tree growth model for coppice forests in Austria. Austrian Journal of Forest Science, 128(3): 133–156.
73. NAGEL, J. 1996. Utility program for forest stand assessment and growth prognosing [in German: Anwendungsprogramm zur Bestandesbewertung und zur Prognose der Bestandesentwicklung]. Forst und Holz, 51(3): 76–78.
74. NAGEL, J. 2011. Forest Simulator BWINPro 7.6 – English Manual – Version April 2011. [Online]. Available at: http://www.nw-fva.de/?id=194#524. [Accessed: 2011, June 10].
75. NEWNHAM, R. M. 1964. The development of a stand model for Douglas-fir. Vancouver: University of British Columbia.
76. NORDH, N. E. and VERWIJST, T. 2004. Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice – a comparison between destructive and non-destructive methods. Biomass and Bioenergy, 27(1): 1–8. <https://doi.org/10.1016/j.biombioe.2003.10.007>
77. PACALA, S. W., CANHAM, C. D., SAPONARA, J., SILANDER JR., J. A., KOBE, R. K. and RIBBENS E. C. 1996. Forest Models Defined by Field Measurements: Estimation, Error Analysis and dynamics. Ecological Monographs, 66(1): 1–43. <https://doi.org/10.2307/2963479>
78. PALLARDY, S. G. 2008. Physiology of Woody Plants. San Diego: Academic Press.
79. PENG, C. 2000. Growth and yield models for uneven-aged stands: past, present and future. Forest Ecology and Management, 132(2–3): 259–279. <https://doi.org/10.1016/S0378-1127(99)00229-7>
80. PÉREZ-CRUZADO, C., MERINO, A. and RODRÍGUEZ-SOALLEIRO, R. 2011. A manage­ment tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass and Bioenergy, 35(7): 2839–2851. <https://doi.org/10.1016/j.biombioe.2011.03.020>
81. PETERKEN, G. 1993. Woodland conservation and management. 2nd edition. London: Chapman and Hall.
82. PETERKEN, G. F. 1996. Natural Woodland: Ecology and Conservation in Northern Temperate Regions. Cambridge: Cambridge University Press.
83. PHILIPPOT, S. 1996. Simulation models of short-rotation forestry production and coppice biology. Biomass and Bioenergy, 11(2/3): 85–93. <https://doi.org/10.1016/0961-9534(96)00008-6>
84. PORTE, A. and BARTELINK, H. H. 2002. Modelling mixed forest growth: a review of models for forest management. Ecological Modelling, 150(1–2): 141–188. <https://doi.org/10.1016/S0304-3800(01)00476-8>
85. PRETZSCH, H. 1992. The concept and construction of growth models for pure and mixed forest stands [in German: Konzeption und Konstruktion von Wuchsmodellen für Rein- und Mischbestände]. Forstl. Forschungsberichte, 115–358. München: Forstwissenschaftliche Fakultät der Universität München und Bayerische Forstliche Versuchs- und Forschungsanstalt.
86. PRETZSCH, H., BIBER, P. and ĎURSKÝ, J. 2002. The single tree-based stand simulator SILVA: construction, application and evaluation. Forest Ecology and Management, 162(1): 3–21. <https://doi.org/10.1016/S0378-1127(02)00047-6>
87. PUKKALA, T. and MIINA, J. 1997. A method for stochastic multiobjective optimization of stand management. Forest Ecology and Management, 98(2): 189–203. <https://doi.org/10.1016/S0378-1127(97)00081-9>
88. PYTTEL, P. L., FISCHER, U. F., SUCHOMEL, C., GÁRTNER, S. M. and BAUHUS, J. 2013. The effect of harvesting on stump mortality and re-sprouting in aged oak coppice forests. Forest Ecology and Management, 289: 18–27. <https://doi.org/10.1016/j.foreco.2012.09.046>
89. RACKHAM, O. 1980. Ancient Woodland: its history, vegetation and uses in England. London: Castlepoint Press.
90. REDEI, K. and GAL, J. 1986. Yield of robinia stands. Erdeszeti-Kutatasok, 76–77: 195–203.
91. ŘEHÁK, J. 1981. Adjusted yield tables for oak, alder and hornbeam in coppice [in Czech: Úprava růstových tabulek pro výmladkový dub, olši a habr]. Kostelec nad Černými lesy: Vysoká škola zemědělská v Praze.
92. RETANA, J., RIBA, M., CASTELL, C. and ESPELTA, J. M. 1992. Regeneration by sprouting of holm-oak (Quercus ilex) stands exploited by selection thinning. Vegetatio, 99–100(1): 355–364. <https://doi.org/10.1007/BF00118242>
93. SCHNEIDER, W. F. and PFEIL, W. 1843. Experience-based volume tables for tree species occuring in pure forest stands of various ages of coppice and high forest in Germany [in German: Erfahrungs-Tafeln über Massengehalt der in Deutschland in reinen Beständen vorkommenden Holzarten in verschiedenem Alter für Hoch- und Niederwald: Mit Angabe des Nutzungsprozents, des Durchschnittszuwachses und Wertnutzungsprozents]. Berlin: Beit und Comp. Verlag.
94. SEIDEL, D., ALBERT, K., FEHRMANN, L. and AMMER, C. 2012. The potential of terrestrial laser scanning for the estimation of understory biomass in coppice-with-standard systems. Biomass and Bioenergy, 47: 20–25. <https://doi.org/10.1016/j.biombioe.2012.10.009>
95. SIMON, J., ZACH, J. and DRÁPELA, K. 1993. Simulation model for beech (Fagus sylvatica), White Carpathians, Hrubý Jeseník mountains [in Czech: Simulační model pro dřevinu buk (Fagus sylvatica), Bílé Karpaty, Hrubý Jeseník]. Brno: Mendelova zemědělská a lesnická univerzita v Brně.
96. SÖDERBERGH, I. and LEDERMANN, T. 2003. Algorithms for simulating thinning and harvesting in five European individual-tree growth simulators: a review. Computers and Electronics in Agriculture, 39(2): 115–140. <https://doi.org/10.1016/S0168-1699(03)00022-X>
97. SPECHT, A. and WEST, P. 2003. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales, Australia. Biomass and Bioenergy, 25(4): 363–379. <https://doi.org/10.1016/S0961-9534(03)00050-3>
98. ŠPLÍCHALOVÁ, M., ADAMEC, Z., KADAVÝ, J. and KNEIFL, M. 2012. Probability model of sessile oak (Quercus petraea (Matt.) Liebl.) stump sprouting in the Czech Republic. European Journal of Forest Research, 131(5): 1611–1618. <https://doi.org/10.1007/s10342-012-0628-3>
99. SPYROGLOU, G. and CHATZIPHILIPPIDIS, G. 2005. The growth simulator Drymos as a challenge for modelling sweet chestnut. In: Sustainable management of sweet chestnut ecosystems, 1st Balkan Regional Workshop. Bulgarian Academy of Sciences, 2–5 November 2005. Blagoevgrad: Bulgarian Academy of Sciences, 97–110.
100. STAGE, A. R. 1973. Prognosis model for stand development. Ogden: Forest Service, Intermountain Forest and Range Experiment Station.
101. STERBA, H., MOSER, M. and MONSERUD, R. A. 1995. Prognaus – a growth simulator for pure and mixed forest stands [in German: Prognaus – Ein Waldwachstumsimulator für Rein- und Mischbestände]. Osterreichische Forstzeitung, 106(5): 19–20.
102. SUCHOMEL, C., PYTTEL, P., BECKER, G. and BAUHUS J. 2012. Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass and Bioenergy, 46: 722–730. <https://doi.org/10.1016/j.biombioe.2012.06.021>
103. SUN, H., ZHANG, J., DUAN, A. and HE, C. 2007. A review of stand basal area growth models. Forestry Studies in China, 9(1): 85–94. <https://doi.org/10.1007/s11632-007-0014-2>
104. SURENDRAN NAIR, S., KANG, S., ZHANG, X., MIGUEZ, F. E., IZAURRALDE, R. C., POST, W. M., DIETZE, M. C., LYND, L. R. and WULLSCHLEGER, S. D. 2012. Bioenergy crop models: descriptions, data requirements, and future challenges. Global Change Biology Bioenergy, 4(6): 620–633. <https://doi.org/10.1111/j.1757-1707.2012.01166.x>
105. SZABÓ, P. 2010. Driving forces of stability and change in woodland structure: A case-study from the Czech lowlands. Forest Ecology and Management, 259(3): 650–656. <https://doi.org/10.1016/j.foreco.2009.11.026>
106. SZYMURA, T. H. 2010. The traditional coppice management system in Central Europe and its impact on biological diversity. Sylwan, 154(8): 545–551.
107. TAHVANAINEN, L. 1996. Diameter growth models induced by competition for four Salix clone. Biomass and Bioenergy, 11(2/3): 167–175. <https://doi.org/10.1016/0961-9534(96)00011-6>
108. TOMÉ, M. 1990. Distance dependent competition measures to model growth of individual trees. In: BURKHART, H. E. (ed.), Research in Forest Mensuration, Growth and Yield. Blacksburg: School of Forest and Wildlife Resources, 219–231.
109. TOMÉ, M. 1996. Modelling competition in short rotation forests. Biomass and Bioenergy, 11(2/3): 177–187. <https://doi.org/10.1016/0961-9534(96)00042-6>
110. TOMÉ, M. and BURKHART, H. E. 1989. Distance-Dependent Competition Measures for Predicting Growth of Individual Trees. Forest Science, 35(3): 816–831.
111. TRNKA, M., FIALOVÁ, J., KOUTECKÝ, V., FAJMAN, M., ŽALUD, Z. and HEJDUK, S. 2008. Biomass production and survival rates of selected poplar clones grown under a short-rotation system on arable land. Plant, Soil and Environment, 54(2): 78–88. <https://doi.org/10.17221/437-PSE>
112. VAN CALSTER, H., BAETEN, L., DE SCHRIJVER, A., DE KEERSMAEKER, L., ROGISTER, J. E., VERHEYEN, K. and HERMY, M. 2007. Management driven changes (1967–2005) in soil acidity and the understorey plant community following conversion of a coppice-with-standards forest. Forest Ecology and Management, 241(1–3): 258–271. <https://doi.org/10.1016/j.foreco.2007.01.007>
113. VAN CALSTER, H., BAETEN, L., VERHEYEN, K., DE KEERSMAEKER, L., DEKEYSER, S., ROGISTER, J. E. and HERMY, M. 2008. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecology and Management, 256(4): 519–528. <https://doi.org/10.1016/j.foreco.2008.04.042>
114. VANCLAY, J. K. 2010. Robust relationships for simple plantation growth models based on sparse data. Forest Ecology and Management, 259(5): 1050–1054. <https://doi.org/10.1016/j.foreco.2009.12.026>
115. VYSKOT, M., JURČA, J., KORPEĽ, S. and RÉH, J. 1978. Silviculture [in Czech: Pěstění lesů]. Praha: Státní zemědělské nakladatelství.
116. WEIGEL, D. R. and PENG, C. Y. J. 2002. Predicting stump sprouting and competitive success of five oak species in southern Indiana. Canadian Journal of Forest Research, 32(4): 703–712. <https://doi.org/10.1139/x02-042>
117. WYKOFF, R., CROOKSTON, N. L. and STAGE, A. 1982. User’s Guide to the Stand Prognosis Model. In: Intermountain Forest and Range Experiment Station, Res. Paper INT-137. Forest Service, U.S. Department of Agriculture.
118. ZACH, J. 1991. Simulation model of even aged spruce stands development [in Czech: Simulační model vývoje stejnověkých smrkových porostů]. Brno: Vysoká škola zemědělská v Brně.
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive