Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63, 1565-1574

https://doi.org/10.11118/actaun201563051565
Published online 2015-10-29

Food Offer Inside Agroecosystem Soils as an Ecological Factor for Settling Microhabitats by Soil Saprophagous Mites

Jaroslav Smrž1, Tomáš Kučera2, Zdeněk Vašků3

1Department of Zoology, Faculty of Science, Charles University in Prague, Ovocný trh 3–5, 116 36 Praha 1, Czech Republic
2University of South Bohemia in České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
3Research Institute for Soil and Water Conservation, Žabovřeská 25, 156 27 Praha 5-Zbraslav, Czech Republic

References

1. ABBOTT, L. K. and MURPHY, D. V. 2003. Soil biological fertility. Dordrecht: Kluwer Academic Publishing.
2. ANDRÉN, O. and LAGERLŐF, J. 1980. The abundance of soil animals (Microarthropoda, Enchytraeidae, Nematoda) in a crop rotation dominated by ley and in a rotation with varied crops. In: DINDAL, D. (ed.), Soil Biology as Related to Land Use Practices. Washington, D.C.: E. P. A, 274–279.
3. BENCKISER, G. 1997. Fauna in soil ecosystems. N. York: Marcel Dekker, Inc.
4. COLEMAN, D. C., CROSSLEY, D. A. Jr. and HENDRIX, P. F. 2004. Fundamentals of soil ecology. Amsterdam: Elsevier.
5. ČATSKÁ, V. and SMRŽ, J. 1988. Relationships between soil mites and microorganisms in apple seedling rhizosphere. In: VANČURA, V. and KUNC, F. (eds.), Interrelations between plants and microorganisms in soil. Praha: Academia, 377–382.
6. DROBNÁ, L. 1999. The ecology of the oribatid (Acari: Oribatida) forest and grassland communities near the Kolín town and anatomy, biology and ecology of the species Gustavia microcephala. Thesis. Praha: Charles University in Prague.
7. DUNGER, W., WANNER, M., HAUSER, H., HOHBERG, K., SCHULZ, H. J., SCHWALBE, T., SEIFERT, B., VOGEL, J., VOIGTLANDER, K., ZIMDARS, B. and ZULKA, K. P. 2001. Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia, 45: 243–271. <https://doi.org/10.1078/0031-4056-00083>
8. FROUZ, J. 2008. The effect of liter type and macrofauna community on litter decomposition and organic matter accumulation in post mining sites. Biologia, 63: 249–253. <https://doi.org/10.2478/s11756-008-0031-1>
9. LAGERLŐF, J. and ANDRÉN, O. 1988. Abundance and activity of soil mites (Acari) in four cropping systems. Pedobiologia, 32: 129–145.
10. LAVELLE, P. and SPAIN, A. V. 2001. Soil ecology. Dordrecht: Kluwer Academic Publishing.
11. LEGENDRE, P. and LEGENDRE, L. 1998. Numerical Ecology. 2nd edition. Amsterdam: Elsevier.
12. LEPŠ, J. and ŠMILAUER, P. 2003. Multivariate Analysis of Ecological Data using CANOCO. Cambridge: Cambridge University Press.
13. MCCUNE, B. and MEFFORD, M. J. 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5. Gleneden Beach: MjM Software.
14. NĚMEČEK, J. and KOZÁK, J. 2005. Status of soil surveys, inventory and soil monitoring in the Czech Republic. Eur. Soil Bureau, Res. Rep., 9: 103–109.
15. ROCKETT, C. L. 1986. Agricultural impact on the horizontal distribution of oribatid mites (Acari: Oribatida). Int. J. Acarol., 12: 175–180. <https://doi.org/10.1080/01647958608683461>
16. SHEALS, J. G. 1956. Soil population studies 1. The effect of cultivation and treatment with insecticides. Bull. Entomol. Res., 47: 803–822. <https://doi.org/10.1017/S0007485300047039>
17. SMRŽ, J. 1989. Internal anatomy of Hypochthonius rufulus (Acari, Oribatida). J. Morphol., 200: 215–230. <https://doi.org/10.1002/jmor.1052000210>
18. SMRŽ, J. 2002. Nutritional biology: the basic step in the autecological studies (multi-methodical approach). Eur. J. Soil Biol., 38: 35–38. <https://doi.org/10.1016/S1164-5563(01)01120-7>
19. SMRŽ, J. 2006a. Microhabitat selection in the simple oribatid community dwelling in epilithic moss cover (Acari: Oribatida). Naturwisseschaften, 93: 570–576 <https://doi.org/10.1007/s00114-006-0141-y>
20. SMRŽ, J. 2006b. Type of hemocytes in saprophagous soil mites (Acari: Oribatida, Acaridida), and the correlation between their presence and certain processes within mites. Eur. J. Entomol., 103: 679–686. <https://doi.org/10.14411/eje.2006.088>
21. SMRŽ, J. and ČATSKÁ, V. 2010. Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis, 52: 33–40. <https://doi.org/10.1007/s13199-010-0099-6>
22. SMRŽ, J. and JUNGOVÁ, E. 1989. The ecology of a field population of Tyrophagus putrescentiae (Acari, Acaridida). Pedobiologia, 33: 183–192.
23. SMRŽ, J. and TRELOVÁ, M. 1995. The associations of bacteria an some soil mites (Acari: Oribatida and Acaridida). Acta Zool. Fenn., 196: 120–123.
24. TER BRAAK, C. J. F. and ŠMILAUER, P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination. Version 4.5. Ithaca: Microcomputer Power.
25. TISCHLER, W. 1976. Einführung in die Ökologie. Stuttgart, NewYork: G. Fischer-Verlag.
26. WALLWORK, J. A. 1976. The distribution and diversity of soil fauna. London: Academic Press.
27. WOODRING, J. P., COOK, E. F. 1962. The internal anatomy, reproductive physiology and molting process of Ceratozetes cisalpinus (Acarina: Oribatei). An. Entomol. Soc. Am., 155: 164–181. <https://doi.org/10.1093/aesa/55.2.164>
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive