Acta Univ. Agric. Silvic. Mendelianae Brun. 2011, 59, 469-476

https://doi.org/10.11118/actaun201159070469
Published online 2014-01-26

Vectorised Spreading Activation algorithm for centrality measurement

Alexander Troussov1, František Dařena2, Jan Žižka2, Denis Parra3, Peter Brusilovsky3

1BM Dublin Center for Advanced Studies, IBM Ireland
2Ústav informatiky / SoNet Research Center, Mendelova univerzita v Brně, Zemědělská 1, 613 00 Brno
3University of Pittsburgh, School of Information Sciences, University of Pittsburgh, 135 North Bellefield Ave., Pittsburgh, PA 15260, USA

References

1. BIEMANN, C., 2006: Chinese Whispers – An Efficient Graph Clustering Algorithm And Its Application To Natural Language Processing Problems. TextGraphs Workshop On Graph Based Methods For Natural Language Processing.
2. BORGATTI, S. P., 2005: Centrality and network flow. Social Networks, 27, 1: 55–71. <https://doi.org/10.1016/j.socnet.2004.11.008>
3. BORGATTI, S., EVERETT, M., 2006: A graph-theoretic perspective on centrality. Social Networks, 28, 4: 466–484. <https://doi.org/10.1016/j.socnet.2005.11.005>
4. CATTUT, C., SCHMITZ, C., BALDASSARRI, A., SERVEDIO, V. D. P., LORETO, V., HOTHO, A., GRAHL, M., STUMME, G., 2007: Network properties of folksonomies. AI Communications, 20, 4: 245–262.
5. CRESTANI, F., 1997: Application of Spreading Activation Techniques in Information Retrieval. Artificial Intelligence Review, 11, 6: 453–482. <https://doi.org/10.1023/A:1006569829653>
6. DAŘENA, F., TROUSSOV, A., ŽIŽKA, J., 2010: Simulating activation propagation in social networks using the graph theory. Acta univ. agric. et silvic. Mendel. Brun., LVIII, 3: 21–28. <https://doi.org/10.11118/actaun201058030021>
7. GIRVAN, M., NEWMAN, M. E. J., 2002: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99, 12: 7821–7826. <https://doi.org/10.1073/pnas.122653799>
8. HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., 2009: The Elements of Statistical Learning. Springer series in statistics.
9. HOTHO, A., JASCHKE, R., SCHMITZ, C., STUMME, G., 2006: Information retrieval in folksonomies: Search and ranking. Lecture Notes in Computer Science, 4011: 411–426. <https://doi.org/10.1007/11762256_31>
10. ROCHA, C, SCHWABE, D., POGGI DE ARAGAO, M., 2004: A Hybrid Approach for Searching in the Semantic Web. Proceedings of the 13th international conference on World Wide Web, New York: 374–383.
11. RÜBENKÖNIG, O., 2006: The Finite Difference Method (FDM) – An introduction. Albert Ludwigs University of Freiburg.
12. SCHIFF, J. L., 2008: Cellular automata; a discrete view of the world. Wiley-Interscience.
13. STEIN, B., NIGEMMAN, O., 1999: On the nature of structure and its identification. Lecture Notes in Computer Science, 1665: 122–134. <https://doi.org/10.1007/3-540-46784-X_13>
14. TROPMAN, J. E., ERLICH, J. L., ROTHMAN, J., 2006: Tactics and Techniques of Community Intervention. Wadsworth Publishing.
15. TROUSSOV, A., LEVNER. E., BOGDAN, C., JUDGE, J., BOTVICH, D., 2009: Spreading Activation Methods. In: Shawkat A., Xiang, Y. (Eds). Dynamic and Advanced Data Mining for Progressing Technological Development, IGI Global.
16. TROUSSOV, A., PARRA, D., BRUSILOVSKY, P., 2009: Spreading Activation Approach to Tag-aware Recommenders: Modeling Similarity on Multidimensional Networks. In: Jannach et al. (Eds.) Proceedings of Workshop on Recommender Systems and the Social Web at the 2009 ACM conference on Recommender systems.
17. WAL, T. V., 2007: Folksonomy Coinage Definition. http://vanderwal.net/folksonomy.html.
18. WASSERMAN, S., FAUST, K., 1994: Social network analysis: methods and applications. Cambridge: Cambridge University Press.
19. WOLFRAM, S., 2002: A New Kind of Science. Wolfram Media. ISBN 1-57955-008-8.
front cover

ISSN 1211-8516 (Print)

ISSN 2464-8310 (Online)

Current issue

Review Management System NEW Indexed in DOAJ

Archive