Acta Univ. Agric. Silvic. Mendelianae Brun. 2025, 73(6), 305-319 | DOI: 10.11118/actaun.2025.021

CRICKET POWDER (ACHETA DOMESTICUS): A VERSATILE AND SUSTAINABLE PROTEIN SOURCE IN FOOD APPLICATIONS

Le Pham Tan Quoc ORCID...1, Pham My Hao ORCID...1, Pham Thi Quyenù ORCID...1, Lam Bach Bao Phuong ORCID...1
1 Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

In the context of a growing population and the increasing demand for sustainable protein sources, edible insects – particularly crickets – are emerging as a highly promising alternative food option. This article focuses on synthesizing and analyzing existing research related to the nutritional composition of cricket powder from various geographical sources, such as Thailand, Kenya, and Canada. Cricket flour has been reported to contain high levels of protein (42.0–48.87%) and fat (23.6– 29.1%), along with essential minerals such as potassium (826–1 224 mg/100 g), iron (4.06– 5.99 mg/100 g), zinc (2.17– 21.8 mg/100 g), etc. — micronutrients that are vital for human health. The variation in nutritional content among samples indicates the role of the species of cricket, the feed, the rearing conditions, and the processing methods. When incorporated at substitution levels of 2–50% compared with conventional ingredients, cricket powder demonstrates great potential as both a meat alternative and a functional ingredient. Its diverse nutritional profile makes it suitable for specialized applications in the food industry. Overall, this overview clarifies the potential applications of cricket powder in the future food system, supporting directions toward sustainability, safety, and improved nutrition.

Keywords: Acheta domesticus, cricket powder, edible insects, sustainable food source

Received: August 9, 2025; Revised: October 18, 2025; Accepted: October 20, 2025; Published: January 1, 2026  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Le Pham, T.Q., Hao, P.M., Thi Quyenù, P., & Phuong, L.B.B. (2025). CRICKET POWDER (ACHETA DOMESTICUS): A VERSATILE AND SUSTAINABLE PROTEIN SOURCE IN FOOD APPLICATIONS. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis73(6), 305-319. doi: 10.11118/actaun.2025.021
Download citation
PDF will be unlocked 1.3.2026

References

  1. ARDOIN, R., MARX, B. D., BOENECKE, C., PRINYAWIWATKUL, W. 2021. Effects of cricket powder on selected physical properties and US consumer perceptions of whole-wheat snack crackers. International Journal of Food Science and Technology. 56(8), 4070-4080. https://doi.org/10.1111/ijfs.15032 Go to original source...
  2. ARDOIN, R., ROMERO, R., MARX, B., PRINYAWIWATKUL, W. 2020. Exploring new and modified rejection-type thresholds using cricket snack crackers. Foods. 9(10), 1352. https://doi.org/10.3390/foods9101352 Go to original source...
  3. AYIEKO, M. A., OGOLA, H. J., AYIEKO, I. A. 2016. Introducing rearing crickets (gryllids) at household levels: Adoption, processing and nutritional values. Journal of Insects as Food and Feed. 2(3), 203-211. https://doi.org/10.3920/JIFF2015.0080 Go to original source...
  4. AYLLÓN-PARRA, N., CASTELLARI, M., GOU, P., RIBAS-AGUSTÍ, A. 2025. Cricket powder (Acheta domesticus) nutritional and techno-functional properties and effects of solid-state fermentation with Pleurotus ostreatus and Rhizopus oligosporus. Innovative Food Science & Emerging Technologies. 104, 104066. https://doi.org/10.1016/j.ifset.2025.104066 Go to original source...
  5. BARTON, A., RICHARDSON, C. D., MCSWEENEY, M. B. 2020. Consumer attitudes toward entomophagy before and after evaluating cricket (Acheta domesticus)-based protein powders. Journal of Food Science. 85(3), 781-788. https://doi.org/10.1111/1750-3841.15043 Go to original source...
  6. BAWA, M., SONG SERMPONG, S., KAEWTAPEE, C., CHANPUT, W. 2020. Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. Journal of Food Processing and Preservation. 44(8), 14601. https://doi.org/10.1111/jfpp.14601 Go to original source...
  7. BOLLA, A. M., CARETTO, A., LAURENZI, A., SCAVINI, M., PIEMONTI, L. 2019. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients. 11(5), 962. https://doi.org/10.3390/nu11050962 Go to original source...
  8. BOONARSA, P., BUNYATRATCHATA, A., PHUSEERIT, O., PHONPHAN, N., CHUMROENPHAT, T., DECH AKHAMPHU, A., THAMMAPAT, P., KATISART, T., SIRIAMORNPUN, S. 2025. Quality variation of house cricket (Acheta domesticus) powder from Thai farms: Chemical composition, micronutrients, bioactive compounds, and microbiological safety. Food Chemistry: X. 102698. https://doi.org/10.1016/j.fochx.2025.102698 Go to original source...
  9. BROSNAN, J. T., BROSNAN, M. E. 2013. Glutamate: a truly functional amino acid. Amino Acids. 45(3), 413-418. https://doi.org/10.1007/s00726-012-1280-4 Go to original source...
  10. CAO, E., CHEN, Y., CUI, Z., FOSTER, P. R. 2003. Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnology and Bioengineering. 82(6), 684-690. https://doi.org/10.1002/bit.10612 Go to original source...
  11. CHENG, K., LEONG, K., CHAN, S. 2022. Cricket as an alternative source of protein in the development of nutritious baked chips. Food Research. 6(2), 74-82. Go to original source...
  12. DA ROSA MACHADO, C., THYS, R. C. S. 2019. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innovative Food Science & Emerging Technologies. 56, 102180. https://doi.org/10.1016/j.ifset.2019.102180 Go to original source...
  13. DUDA, A., ADAMCZAK, J., CHE£MIÑSKA, P., JUSZKIEWICZ, J., KOWALCZEWSKI, P. 2019. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods. 8, 46. https://doi.org/10.3390/foods8020046 Go to original source...
  14. FERNANDEZ-CASSI, X., SUPEANU, A., VAGA, M., JANSSON, A., BOQVIST, S., VAGSHOLM, I. 2019. The house cricket (Acheta domesticus) as a novel food: a risk profile. Journal of Insects as Food and Feed. 5(2), 137-158. Go to original source...
  15. FIELDS, H., RUDDY, B., WALLACE, M. R., SHAH, A., MILLSTINE, D. 2016. Are low-carbohydrate diets safe and effective? Journal of Osteopathic Medicine. 116(12), 788-793. https://doi.org/10.7556/jaoa.2016.154 Go to original source...
  16. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). 2013. Edible insects. Future prospects for food and feed security. FAO Forestry Paper 171, FAO, Rome, Italy.
  17. GANTNER, M., SADOWSKA, A., PIOTROWSKA, A., KULIK, K., SIONEK, B., KOSTYRA, E. 2024. Wheat bread enriched with house cricket powder (Acheta domesticus L.) as an alternative protein source. Molecules. 29(3), 711. https://doi.org/10.3390/molecules29030711 Go to original source...
  18. GRABOWSKI, N. T., KLEIN, G. 2017. Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Science and Technology International. 23(1), 17-23. https://doi.org/10.1177/1082013216652994 Go to original source...
  19. HAMERMAN, E. J. 2016. Cooking and disgust sensitivity influence preference for attending insect-based food events. Appetite. 96, 319-326. https://doi.org/10.1016/j.appet.2015.09.029 Go to original source...
  20. HARTMANN, C., SHI, J., GIUSTO, A., SIEGRIST, M. 2015. The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Quality and Preference. 44, 148-156. https://doi.org/10.1016/j.foodqual.2015.04.013 Go to original source...
  21. HENDRIKS, W. H., BUTTS, C. A., THOMAS, D. V., JAMES, K. A. C., MOREL, P. C. A., VERSTEGEN, M. W. A. 2002. Nutritional quality and variation of meat and bone meal. Asian-Australasian Journal of Animal Sciences. 15(10), 1507-1516. Go to original source...
  22. HO, I., PETERSON, A., MADDEN, J., HUANG, E., AMIN, S., LAMMERT, A. 2022. Will it cricket? Product development and evaluation of cricket (Acheta domesticus) powder replacement in sausage, pasta, and brownies. Foods. 11(19), 3128. https://doi.org/10.3390/foods11193128 Go to original source...
  23. HOANG, H. A. 2023. Consumer acceptability of alternative foods: A study of processed cricket-based foods in Vietnam. Earth and Environmental Science. 1155(1), 012025. https://doi.org/10.1088/1755-1315/1155/1/012025 Go to original source...
  24. KAMEI, Y., HATAZAWA, Y., UCHITOMI, R., YOSHIMURA, R., MIURA, S. 2020. Regulation of skeletal muscle function by amino acids. Nutrients. 12(1), 261. https://doi.org/10.3390/nu12010261 Go to original source...
  25. KASOZI, N., ASIZUA, D., IWE, G., NAMULAWA, V. T. 2018. Nutrient composition of fish protein powder developed from Brycinus nurse (Rüppell, 1832). Food Science & Nutrition. 6(8), 2440-2445. https://doi.org/10.1002/fsn3.844 Go to original source...
  26. KIM, E.-M., CHANG, Y.-J., AHN, M.-Y., LEE, Y.-H., PARK, J. J., LIM, J.-H. 2016. Determination of the shelf life of cricket powder and effects of storage on its quality characteristics. Korean Journal of Food Preservation. 23(2), 211-217. https://doi.org/10.11002/kjfp.2016.23.2.211 (in Korean) Go to original source...
  27. KIM, S. H., KIM, Y., HAN, J. S. 2020. Antioxidant activities and nutritional components of cricket (Gryllus bimaculatus) powder and protein extract. Asian Journal of Beauty and Cosmetology. 18(2), 163-172. https://doi.org/10.20402/ajbc.2020.0016 Go to original source...
  28. KOWALCZEWSKI, P. £., GUMIENNA, M., RYBICKA, I., GÓRNA, B., SARBAK, P., DZIEDZIC, K., KMIECIK, D. 2021. Nutritional value and biological activity of gluten-free bread enriched with cricket powder. Molecules. 26(4), 1184. https://doi.org/10.3390/molecules26041184 Go to original source...
  29. LANGE, K. W., NAKAMURA, Y. 2021. Edible insects as future food: Chances and challenges. Journal of Future Foods. 1(1), 38-46. https://doi.org/10.1016/j.jfutfo.2021.10.001 Go to original source...
  30. LONG, J. M., MOHAN, A. 2021. Development of meat powder from beef byproduct as value-added food ingredient. LWT. 146, 111460. https://doi.org/10.1016/j.lwt.2021.111460 Go to original source...
  31. MAFU, A., KETNAWA, S., PHONGTHAI, S., SCHÖNLE CHNER, R., RAWDKUEN, S. 2022. Whole wheat bread enriched with cricket powder as an alternative protein. Foods. 11(14), 2142. https://doi.org/10.3390/foods11142142 Go to original source...
  32. MANCINI, S., MORUZZO, R., RICCIOLI, F., PACI, G. 2019. European consumers' readiness to adopt insects as food. A review. Food Research International. 122, 661-678. https://doi.org/10.1016/j.foodres.2019.01.041 Go to original source...
  33. MATIN, N., UTTERBACK, P., PARSONS, C. M. 2021. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poultry Science. 100, 101146. https://doi.org/10.1016/j.psj.2021.101146 Go to original source...
  34. MARZOLI, F., TATA, A., ZACOMETTI, C., MALABUSINI, S., JUCKER, C., PIRO, R., RICCI, A., BELLUCO, S. 2023. Microbial and chemical stability of Acheta domesticus powder during one year storage period at room temperature. Frontiers in Sustainable Food Systems. 7, 1179088. https://doi.org/10.3389/fsufs.2023.1179088 Go to original source...
  35. MEGIDO, C. R., DESMEDT, S., BLECKER, C., BÉRA, F., HAUBRUGE, É., ALABI, T., FRANCIS, F. 2017. Microbiological load of edible insects found in Belgium. Insects. 8(1), 12. https://doi.org/10.3390/insects8010012 Go to original source...
  36. MEIJER, N., SAFITRI, R. A., TAO, W., HOEK-VAN DEN HIL, E. F. 2025. Review: European Union legislation and regulatory framework for edible insect production-Safety issues. Animal. 101468. https://doi.org/10.1016/j.animal.2025.101468 Go to original source...
  37. MIN, K. T., KANG, M. S., KIM, M. J., LEE, S. H., HAN, J. S., KIM, A. J. 2016. Manufacture and quality evaluation of cookies prepared with mealworm (Tenebrio molitor) powder. The Korean Journal of Food and Nutrition. 29(1), 12-18. https://doi.org/10.9799/ksfan.2016.29.1.012 Go to original source...
  38. MITCHAOTHAI, J., LERTPATARAKOMOL, R., TRAIRATAPIWAN, T., LUKKANANUKOOL, A. 2024. Influence of incubation temperature and relative humidity on the egg hatchability pattern of two-spotted (Gryllus bimaculatus) and house (Acheta domesticus) crickets. Animals. 14(15), 2176. https://doi.org/10.3390/ani14152176 Go to original source...
  39. MONTOWSKA, M., KOWALCZEWSKI, P. £., RYBICKA, I., FORNAL, E. 2019. Nutritional value, protein and peptide composition of edible cricket powders. Food Chemistry. 289, 130-138. https://doi.org/10.1016/j.foodchem.2019.03.062 Go to original source...
  40. MORELLI, M. B., SANTULLI, G., GAMBARDELLA, J. 2020. Calcium supplements: Good for the bone, bad for the heart? A systematic updated appraisal. Atherosclerosis. 296, 68-73. https://doi.org/10.1016/j.atherosclerosis.2020.01.008 Go to original source...
  41. NOVIANA, A., PALUPI, E., GIRIWONO, P. E., RIMBAWAN, R. 2024. Decreasing fishy odour from catfish (Clarias sp.) flour as a food ingredient by using various soaking solutions. Food Research. 8(1), 349-358. https://doi.org/10.26656/fr.2017.8(1).123 Go to original source...
  42. NOWAKOWSKI, A. C., MILLER, A. C., MILLER, M. E., XIAO, H., WU, X. 2022. Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition. 62(13), 3499-3508. https://doi.org/10.1080/10408398.2020.1867053 Go to original source...
  43. OLIVEIRA, L. A., PEREIRA, S. M. S., DIAS, K. A., DA SILVA PAES, S., GRANCIERI, M., JIMENEZ, L. G. S., DE CARVALHO, C. W. P., DE OLIVEIRA, E. E., MARTINO, H. S. D., DELLA LUCIA, C. M. 2024. Nutritional content, amino acid profile, and protein properties of edible insects (Tenebrio molitor and Gryllus assimilis) powders at different stages of development. Journal of Food Composition and Analysis. 125, 105804. https://doi.org/10.1016/j.jfca.2023.105804 Go to original source...
  44. OSIMANI, A., MILANOVIÆ, V., CARDINALI, F., RONCOLINI, A., GAROFALO, C., CLEMENTI, F., PASQUINI, M., MOZZON, M., FOLIGNI, R., RAFFAELLI, N., AQUILANTI, L. 2018. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innovative Food Science & Emerging Technologies. 48, 150-163. https://doi.org/10.1016/j.ifset.2018.06.007 Go to original source...
  45. PAUTER, P., RÓ¯AÑSKA, M., WIZA, P., DWORCZAK, S., GROBELNA, N., SARBAK, P., KOWALCZEWSKI, P. £. 2018. Effects of the replacement of wheat flour with cricket powder on the characteristics of muffins. Acta Scientiarum Polonorum - Technologia Alimentaria. 17(3), 227-233. https://doi.org/10.17306/J.AFS.2018.0570 Go to original source...
  46. PILCO-ROMERO, G., CHISAGUANO-TONATO, A. M., HERRERA-FONTANA, M. E. et al. 2023. House cricket (Acheta domesticus): A review based on its nutritional composition, quality, and potential uses in the food industry. Trends in Food Science & Technology. 142, 104226. https://doi.org/10.1016/j.tifs.2023.104226 Go to original source...
  47. PULEO, S., FIORE, A., SIEGHARTSLEITNER, A., RUSSO, G. L., GRIGOR, J., DI MONACO, R. 2025. Cricket flour integration in biscuits: a study on formulation and consumer acceptance. Journal of Insects as Food and Feed. 1, 1-14. Go to original source...
  48. RAVZANAADII, N. 2012. Nutritional value of mealworm, Tenebrio molitor as food source. International Journal of Industrial Entomology. 25(1), 93-98. http://dx.doi.org/10.7852/ijie.2012.25.1.093 Go to original source...
  49. REINWALD, S., AKABAS, S. R., WEAVER, C. M. 2010. Whole versus the piecemeal approach to evaluating soy. Journal of Nutrition. 140, 2335-2343. Go to original source...
  50. ROSA, G., MILLER, L., CLASEN, T. 2010. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala. The American Journal of Tropical Medicine and Hygiene. 82(3), 473. https://doi.org/10.4269/ajtmh.2010.09-0320 Go to original source...
  51. RÓ¯Y£O, K., JÊDRUCHNIEWICZ, K., KRASUCKA, P., BISZCZAK, W., OLESZCZUK, P. 2022. Physicochemical characteristics of biochar from waste cricket chitin (Acheta domesticus). Molecules. 27(22), 8071. https://doi.org/10.3390/molecules27228071 Go to original source...
  52. RUGGERI, M., BIANCHI, E., VIGANI, B., SÁNCHEZ-ESPEJO, R., SPANO, M., FILA, C. T., MANNINA, L., VISERAS, C., ROSSI, S., SANDRI, G. 2023. Nutritional and functional properties of novel Italian spray-dried cricket powder. Antioxidants. 12(1), 112. https://doi.org/10.3390/antiox12010112 Go to original source...
  53. RUSZKOWSKA, M., TAÑSKA, M., KOWALCZEWSKI, P. £. 2022. Extruded corn snacks with cricket powder: impact on physical parameters and consumer acceptance. Sustainability. 14(24), 16578. https://doi.org/10.3390/su142416578 Go to original source...
  54. SANTOS, E., BRUNHETA, R., IVAN, T., PEREIRA, C. D., RIBEIRO, V. 2024. Cricket-based food production (Acheta domesticus): Nutritional and sustainability considerations, production methods and HACCP implementation-A narrative review. International Conference on Water Energy Food and Sustainability. 351-360. https://doi.org/10.1007/978-3-031-80330-7_37 Go to original source...
  55. SMARZYÑSKI, K., SARBAK, P., KOWALCZEWSKI, P. £., RÓ¯AÑSKA, M. B. et al. 2021. Low-Field NMR study of shortcake biscuits with cricket powder, and their nutritional and physical characteristics. Molecules. 26(17), 5417. https://doi.org/10.3390/molecules26175417 Go to original source...
  56. SON, Y. J., LEE, J. C., HWANG, I. K., NHO, C.W., KIM, S. H. 2019. Physicochemical properties of mealworm (Tenebrio molitor) powders manufactured by different industrial processes. LWT. 116, 108514. https://doi.org/10.1016/j.lwt.2019.108514 Go to original source...
  57. STEINHAUSEN, C., LECOCQ, A., OLOKTSIDOU, S., RUKOV, J. L. 2024. The effect of transport temperature and duration on survival and growth of house cricket nymphs and eggs. Journal of Insects as Food and Feed. 11(17), 15-20. Go to original source...
  58. STONE, A. K., TANAKA, T., NICKERSON, M. T. 2019. Protein quality and physicochemical properties of commercial cricket and mealworm powders. Journal of Food Science and Technology. 56, 3355-3363. https://doi.org/10.1007/s13197-019-03818-2 Go to original source...
  59. TAKACS, J., BRYON, A., JENSEN, A. B., VAN LOON, J. J., ROS, V. I. 2023. Effects of temperature and density on house cricket survival and growth and on the prevalence of Acheta domesticus densovirus. Insects. 14(7), 588. https://doi.org/10.3390/insects14070588 Go to original source...
  60. TAN, H. S. G., FISCHER, A. R., TINCHAN, P., STIEGER, M., STEENBEKKERS, L. P. A., VAN TRIJP, H. C. 2015. Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Quality and Preference. 42, 78-89. https://doi.org/10.1016/j.foodqual.2015.01.013 Go to original source...
  61. TAN, M. K., TAN, D., CHIA, J. W., ULUHIA, J., KUO, H. C., ONG, I., YEAP, B., PONG, Y. F., ROBILLARD, T. 2022. Can a native cricket species be used as a potential human food source? Nature in Singapore. 1, 2022125. https://doi.org/10.26107/NIS-2022-0125 Go to original source...
  62. UMEBARA, I., AKUTSU, K., KUBO, M., IIJIMA, A., SAKURAI, R., MASUTOMI, H., ISHIHARA, K. 2024. Analysis of fatty acid composition and volatile profile of powder from edible crickets (Acheta domesticus) reared on apple by-products. Foods. 13(11), 1668. https://doi.org/10.3390/foods13111668 Go to original source...
  63. VAN HUIS, A. 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology. 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704 Go to original source...
  64. VAN HUIS, A. 2020. Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed. 6, 27-44. https://doi.org/10.3920/JIFF2019.0017 Go to original source...
  65. VERVERIS, E., BOUÉ, G., POULSEN, M., PIRES, S. M., NIFOROU, A., THOMSEN, S. T., TESSON, V., FEDERIGHI, M., NASKA, A. 2022. A systematic review of the nutrient composition, microbiological and toxicological profile of Acheta domesticus (house cricket). Journal of Food Composition and Analysis. 114, 104859. https://doi.org/10.1016/j.jfca.2022.104859 Go to original source...
  66. VLAHOVA-VANGELOVA, D., BALEV, D., KOLEV, N. 2023. Cricket powder (Acheta domesticus) as a lean pork meat replacer in cooked sausages. Future of Food: Journal on Food, Agriculture and Society. 11(4), 1-12. https://doi.org/10.17170/kobra-202210056951 Go to original source...
  67. WAKEEL, A., FAROOQ, M., BASHIR, K., OZTURK, L. 2018. Micronutrient malnutrition and biofortification: Recent advances and future perspectives. In: M. A. HOSSAIN, T. KAMIYA, D. J. BURRITT, L.-S. P. TRAN, T. FUJIWARA (Eds.). Plant micronutrient use efficiency: molecular and genomic perspectives in crop plants. Academic Press, San Diego, United States, pp. 225-243. https://doi.org/10.1016/B978-0-12-812104-7.00017-4 Go to original source...
  68. WESSELS, I., FISCHER, H. J., RINK, L. 2021. Dietary and physiological effects of zinc on the immune system. Annual Review of Nutrition. 41(1), 133-175. https://doi.org/10.1146/annurev-nutr-122019-120635 Go to original source...
  69. WONGTHAHAN, P., SAE-EAW, A., WONGSRIWORAPON, A., NGOENCHAI, P., CHANDEEWANTA, S., HENGBORIBOON, L. 2025. Structural equation model of sensory preferences, acceptance, and purchase intentions of a novel food product and their relationship to emotional responses: the case of an instant congee product mixed with cricket protein powder. Cogent Business & Management. 12(1), 2441476. https://doi.org/10.1080/23311975.2024.2441476 Go to original source...
  70. XU, Y., THOMAS, M., BHARDWAJ, H. L. 2014. Chemical composition, functional properties and microstructural characteristics of three kabuli chickpea (Cicer arietinum L.) as affected by different cooking methods. International Journal of Food Science & Technology. 49, 1215-1223. Go to original source...
  71. YAMAMOTO, M., KAWABE, T., OSUGI, Y., SATO, N., NAKAMURA, M., MATSUNAGA, K., HORIGUCHI, T., YAGAMI, A. 2025. Two cases of edible cricket allergy: Antigen analysis and cross-reactivity with shrimp and mite allergens. Allergology International. 74(3), 485-487. https://doi.org/10.1016/j.alit.2025.03.005 Go to original source...
  72. ZIOBRO, R., JUSZCZAK, L., WITCZAK, M., KORUS, J. 2016. Non-gluten proteins as structure forming agents in gluten free bread. Journal of Food Science and Technology. 53(1), 571-580. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.